分析 (1)根据平行四边形的想知道的AD=AC,AD⊥AC,连接CE,根据全等三角形的判定和性质即可得到结论;
(2)根据全等三角形的性质得到CF=AD,等量代换得到AC=CF,于是得到CP=$\frac{1}{2}$AB=AE,根据平行四边形的判定定理即可得到四边形ACPE为平行四边形;
(3)由(1)知AC=CF,根据三角形的中位线的性质得到DQ=FQ,根据直角三角形的性质即可得到结论.
解答 (1)证明:在?ABCD中,
∵AD=AC,AD⊥AC,
∴AC=BC,AC⊥BC,
连接CE,
∵E是AB的中点,
∴AE=EC,CE⊥AB,
∴∠ACE=∠BCE=45°,
∴∠ECF=∠EAD=135°,
∵ED⊥EF,
∴∠CEF=∠AED=90°-∠CED,
在△CEF和△AED中,$\left\{\begin{array}{l}{∠CEF=∠AED}\\{EC=AE}\\{∠ECF=∠EAD}\end{array}\right.$,
∴△CEF≌△AED,
∴ED=EF;
(2)解:由(1)知△CEF≌△AED,CF=AD,
∵AD=AC,
∴AC=CF,
∵DP∥AB,
∴FP=PB,
∴CP=$\frac{1}{2}$AB=AE,
∴四边形ACPE为平行四边形;
(3)由(1)知AC=CF,
∵CQ∥AD,
∴DQ=FQ,
∵在Rt△DAF与Rt△DEF中,
∴AQ=EQ=$\frac{1}{2}$DF.
点评 本题考查了平行四边形的性质和判定,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ①② | B. | ①③ | C. | ②③ | D. | ①④ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | y1>y2>y3 | B. | y2>y1>y3 | C. | y3>y1>y2 | D. | y3>y2>y1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com