精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC内接于半圆,AB是直径,过A作直线MN,若∠MAC=ABC.

(1)求证:MN是半圆的切线;

(2)设D是弧AC的中点,连结BDAC G,过DDEABE,交ACF.求证:FD=FG.

【答案】证明见解析

【解析】试题分析:(1)根据圆周角定理推论得到∠ACB=90°,即∠ABC+∠CAB=90°,而∠MAC=∠ABC,则∠MAC+∠BCA=90°,即∠MAB=90°,根据切线的判定即可得到结论;

2)连AD,根据圆周角定理推论得到∠ABC=90°,由DE⊥AB得到∠DEB=90°,则∠1+∠5=90°∠3+∠4=90°,又D是弧AC的中点,即弧CD=DA,得到∠3=∠5,于是∠1=∠4,利用对顶角相等易得∠1=∠2,则有FD=FG

试题解析:(1)证明:∵AB为直径,

∴∠ACB=90°

∴∠ABC+∠CAB=90°

∠MAC=∠ABC

∴∠MAC+∠CAB=90°,即∠MAB=90°

∴MN是半圆的切线;

2)解:如图

∵AB为直径,

∴∠ACB=90°

DE⊥AB

∴∠DEB=90°

∴∠1+∠5=90°∠3+∠4=90°

∵D是弧AC的中点,即弧CD=DA

∴∠3=∠5

∴∠1=∠4

∠2=∠4

∴∠1=∠2

∴FD=FG

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知x1x2是关于x的一元二次方程x22(m1)xm250的两实根.

(1)(x11)(x21)28,求m的值;

(2)已知等腰△ABC的一边长为7,若x1x2恰好是△ABC另外两边的边长,求这个三角形的周长.

【答案】(1)m的值为6;(2)17.

【解析】试题分析

1)由题意和根与系数的关系可得:x1x22(m1)x1x2m25(x11)(x21)28,可得x1x2(x1x2)27从而得到m252(m1)27,解方程求得m的值再由“一元二次方程根的判别式”进行检验即可得到m的值;

27为腰长时,则方程的两根中有一根为7,代入方程可解得m的值(此时m的取值需满足根的判别式 ),将m的值代入原方程,可求得两根(此时两根和7需满足三角形三边之间的关系),从而可求得等腰三角形的周长;

7为底边时,则方程的两根相等,由此可得“根的判别式△=0”,从而可得关于m的方程,解方程求得m的值,代入原方程可求得方程的两根,再由三角形三边之间的关系检验即可.

试题解析

(1)(x11)(x21)28,即x1x2(x1x2)27,而x1x22(m1)x1x2m25

∴m252(m1)27

解得m16m2=-4

又Δ=[2(m1)]24×1×(m25)≥0时,m≥2

∴m的值为6; 

(2) 7为腰长,则方程x22(m1)xm250的一根为7

722×7×(m1)m250

解得m110m24

m10时,方程x222x1050,根为x115x27,不符合题意,舍去.

m4时,方程为x210x210,根为x13x27,此时周长为77317 

7为底边,则方程x22(m1)xm250有两等根,

∴Δ0,解得m2,此时方程为x26x90,根为x13x2333<7,不成立,

综上所述,三角形周长为17

点睛:(1)一元二次方程根与系数的关系成立的前提条件是方程要有实数根,即“根的判别式△ ”;(2)涉及三角形边长的问题中,解得的结果都需要用“三角形三边之间的关系”检验,看三条线段能否围成三角形.

型】解答
束】
21

【题目】如图,已知在△ABC中,DAB的中点,且∠ACD=∠B,若 AB=10,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究

数学课上,老师让同学们利用三角形纸片进行操作活动,探究有关线段之间的关系.

问题情境:

如图1,三角形纸片ABC中,∠ACB90°ACBC.将点C放在直线l上,点AB位于直线l的同侧,过点AADl于点D.

初步探究:

(1)在图1的直线l上取点E,使BEBC,得到图2.猜想线段CEAD的数量关系,并说明理由;

变式拓展:

(2)小颖又拿了一张三角形纸片MPN继续进行拼图操作,其中∠MPN90°MPNP.小颖在图 1 的基础上,将三角形纸片MPN的顶点P放在直线l上,点M与点B重合,过点NNHl于点 H.

请从下面 AB 两题中任选一题作答,我选择_____.

A.如图3,当点N与点M在直线l的异侧时,探究此时线段CPADNH之间的数量关系,并说明理由.

B.如图4,当点N与点M在直线l的同侧,且点P在线段CD的中点时,探究此时线段CDADNH之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形中,边长为的等边三角形的顶点分别在边上.

1)判断的形状,并说明理由;

2)求的长;

3)试求正方形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一次函数y=kx+b的自变量x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9,求此函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电脑公司现有ABC三种型号的甲品牌电脑和DE两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.

1)写出所有选购方案(利用树状图或列表方法表示);

2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?

3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,AD BC 边上的高,且∠ACB=∠BADAE 平分∠CAD,交 BC于点 E,过点 E EFAC,分别交 ABAD 于点 FG.则下列结论:①∠BAC90°;②∠AEF=∠BEF; ③∠BAE=∠BEA; ④∠B2AEF,其中正确的有( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着中国传统节日端午节的临近,东方红商场决定开展欢度端午,回馈顾客的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.

(1)打折前甲、乙两种品牌粽子每盒分别为多少元?

(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?

查看答案和解析>>

同步练习册答案