精英家教网 > 初中数学 > 题目详情
17.若关于x的不等式组$\left\{\begin{array}{l}{x≥a}\\{\frac{x-1}{2}-\frac{2x-1}{6}<1}\end{array}\right.$的解集中只含有3个整数解,则a的取值范围是(  )
A.-2<a≤-1B.-2≤a<-1C.5<a≤6D.5≤a<6

分析 先解不等式组,再根据解集中只含有3个整数,列出不等式,从而可确定a的取值范围.

解答 解:不等式组$\left\{\begin{array}{l}{x≥a}\\{\frac{x-1}{2}-\frac{2x-1}{6}<1}\end{array}\right.$的解集为a≤x<8,
∵解集中含有3个整数是5,6,7,
∴a的取值范围是5≤a<6.
故D.

点评 此题主要考查不等式组的解法及整数解的确定.先把题目中除未知数外的字母当做常数看待解不等式组,然后再根据题目中对结果的限制的条件得到有关字母取值范围.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$是方程mx+y-1=0的一组解,则m的值是$-\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.对于函数y=xn+xm,我们定义y'=nxn-1+mxm-1(m、n为常数).
例如y=x4+x2,则y'=4x3+2x.
已知:y=$\frac{1}{3}$x3+(m-1)x2+m2x.
(1)若方程y′=0有两个相等实数根,则m的值为$\frac{1}{2}$;
(2)若方程y′=m-$\frac{1}{4}$有两个正数根,则m的取值范围为$m≤\frac{3}{4}$且$m≠\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,在等边三角形△ABC中,AB=6,BD是AC边上的高,以点B为圆心,线段BD的长度为半径画弧,交AB于点E,交BC于点F,则图中阴影部分的面积是(  )
A.8$\sqrt{3}$-$\frac{9}{2}$πB.9$\sqrt{3}$-$\frac{9}{2}$πC.9$\sqrt{3}$-4πD.8$\sqrt{3}$-4π

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:
(1)(a+1)2-a(2-a)    
 (2)(x-1+$\frac{2x+1}{x+1}$)÷$\frac{x+2}{2x+2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(-y+2,x+2)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(a,b),对于任意的正整数n,点An均在x轴上方,则a,b应满足的条件为-2<a<2,0<b<4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算
(1)$\frac{3}{\sqrt{3}}$-($π+\sqrt{3}$)0+$\sqrt{3}$-|$\sqrt{3}$-2|
(2)(1-$\sqrt{5}$)($\sqrt{5}$+1)+($\sqrt{5}$-1)2
(3)$\sqrt{48}$-$\sqrt{54}$÷2+(3-$\sqrt{3}$)(1+$\frac{1}{\sqrt{3}}$)
(4)(3$\sqrt{12}$-2$\sqrt{\frac{1}{3}}$+$\sqrt{48}$)$÷2\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.解方程:|2x-1|+|x-2|=x+1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,将△ABC绕点B顺时针旋转到△EBD的位置,且BA∥DE,DE的延长线交BC于点F,若BD=8,DE=6,则EF=$\frac{14}{3}$.

查看答案和解析>>

同步练习册答案