【题目】如图,已知AD是△ABC的中线,E是AD上的一点,且AE=2DE,连接BE并延长交AC于点F.
(1)求证:AF=FC;
(2)求的值.
【答案】(1)证明见解析;(2)3.
【解析】(1)过D作DG∥AC交BF于点G,则DG是△BCF的中位线,且△DEG∽△AEF,依据三角形中位线定理以及相似三角形的性质,确定AF、FC与DG的关系即可证得;
(2)根据(1)中△DEG∽△AEF,DG是△BCF的中位线,利用EF表示出BF即可.
(1)过D作DG∥AC交BF于点G.
∵DG∥AC,又AD是△ABC的中线,即BD=DC,∴DG=FC.
∵DG∥AC,∴△DEG∽△AEF,∴=.又∵AE=2DE,∴=,则DG=AF,∴AF=FC;
(2)∵DG∥AC,又AD是△ABC的中线,即BD=DC,∴BF=2GF.
∵△DEG∽△AEF,∴==,∴GE=EF,设EF=2x,则GE=x,GF=3x,∴BF=2GF=6x,则==3.
科目:初中数学 来源: 题型:
【题目】如下图,点是外的一点,点,分别是两边上的点,点关于的对称点恰好落在线段上,点关于的对称点落在的延长线上.若,,,则线段的长为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若AB是⊙O内接正五边形的一边,AC是⊙O内接正六边形的一边,则∠BAC等于( )
A. 120° B. 6° C. 114° D. 114°或6°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD交BD的延长线于点E,若BD=2,则CE=_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,A(2,0),点 B 在 y 轴上,将三角形 OAB 沿 x 轴负方向平移,平移后的图形为三角形 DEC,且点 C 的坐标为(-6,4) .
(1)直接写出点 E 的坐标 ;
(2)在四边形 ABCD 中,点 P 从点 B 出发,沿“BC→CD”移动.若点 P 的速度为每秒 2 个单位长度, 运动时间为 t 秒,回答下列问题:
①求点 P 在运动过程中的坐标,(用含 t 的式子表示,写出过程);
②当 3 秒<t<5 秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问 x,y,z 之间的数量关系能否确定?若能,请用含 x,y 的式子表示 z,写出过程;若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D为BC的中点,E为AB上一点,DF⊥DE交AC于点F,延长ED至点G,使GD=ED,连接CG.
(1)求证:BE=CG;
(2)求证:BE+CF>EF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知△ABC和△BDE都是等边三角形.则下列结论:①AE=CD;②BF=BG;③∠AHC=60°;④△BFG是等边三角形;⑤HB平分∠AHD.其中正确的有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.
(1)求证:ΔABC≌△DEF;
(2)若∠A=55°,∠B=88°,求∠F的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.
学生立定跳远测试成绩的频数分布表
分组 | 频数 |
1.2≤x<1.6 | a |
1.6≤x<2.0 | 12 |
2.0≤x<2.4 | b |
2.4≤x<2.8 | 10 |
请根据图表中所提供的信息,完成下列问题:
(1)表中a= ,b= ,样本成绩的中位数落在 范围内;
(2)请把频数分布直方图补充完整;
(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com