12£®ÎÒÃÇÓÃ[x]±íʾ²»´óÓÚxµÄ×î´óÕûÊý£¬ÀýÈç[1.5]=1£¬[-2.5]=-3£®Çë½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©[¦Ð]=3£¬[-¦Ð]=-4£®£¨ÆäÖЦÐΪԲÖÜÂÊ£©£»
£¨2£©ÒÑÖªx¡¢yÂú×ã·½³Ì×é$\left\{\begin{array}{l}{[x]+[y]=1}\\{2[x]+3[y]=4}\end{array}\right.$£¬Çóx¡¢yµÄÈ¡Öµ·¶Î§£»
£¨3£©µ±-1¡Üx¡Ü2ʱ£¬Çóº¯Êýy=[x]2-2[x]+3µÄ×î´óÖµÓë×îСֵ£®

·ÖÎö £¨1£©ÀûÓÃÒÑÖª[x]±íʾ²»´óÓÚxµÄ×î´óÕûÊý£¬Ö±½ÓµÃ³ö´ð°¸£»
£¨2£©Ê×ÏȽⷽ³Ì×飬µÃ³ö[x]£¬[y]µÄÖµ½ø¶øµÃ³öx¡¢yµÄÈ¡Öµ·¶Î§£»
£¨3£©·Ö±ðÀûÓõ±-1¡Üx£¼0ʱ£¬µ±0¡Üx£¼1ʱ£¬µ±1¡Üx£¼2ʱ£¬[x]=1£¬µ±x=2ʱ£¬·Ö±ðµÃ³öyµÄÖµ£¬½ø¶øµÃ³ö´ð°¸£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£º[¦Ð]=3£¬[-¦Ð]=-4£»
¹Ê´ð°¸Îª£º3£¬-4£»

£¨2£©½â·½³Ì×éµÃ£º$\left\{\begin{array}{l}{[x]=-1}\\{[y]=2}\end{array}\right.$£¬
Ôò-1¡Üx£¼0£¬2¡Üy£¼3£»

£¨3£©µ±-1¡Üx£¼0ʱ£¬[x]=-1£¬´Ëʱy=£¨-1£©2-2¡Á£¨-1£©+3=6£»
µ±0¡Üx£¼1ʱ£¬[x]=0£¬´Ëʱy=3£»
µ±1¡Üx£¼2ʱ£¬[x]=1£¬´Ëʱy=12-2¡Á1+3=2£»
µ±x=2ʱ£¬[x]=2£¬´Ëʱy=22-2¡Á2+3=3£»
×ÛÉÏËùÊö£ºy×î´ó=6£¬y×îС=2£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁËÈ¡Õû¼ÆËãÒÔ¼°¶þÔªÒ»´Î·½³Ì×éµÄ½â·¨£¬ÀûÓ÷ÖÀàÌÖÂ۵óöyµÄÖµÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬ÒÔBCΪֱ¾¶µÄ¡ÑO£¬½»AB¡¢ACÓÚµãD¡¢E£¬Á¬½ÓDE£®
£¨1£©µ±¡ÏBAC=60¡ã£¬ÇóÖ¤£º2DE=BC£»
£¨2£©ÔÚ£¨1£©Ìõ¼þÏ£¬¹ýµãD×÷DF¡ÍOE½»ACÓÚF£¬Á¬½ÓFO²¢ÑÓ³¤½»ABµÄÑÓ³¤ÏßÓÚG£¬ÈôBD=2£¬BG=$\frac{9}{2}$£¬ÇóCFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÓÐÒ»¸öÊýÕóÅÅÁÐÈçͼ£ºÔòµÚ20ÐдÓ×óÖÁÓÒµÚ10¸öÊýΪ£¨¡¡¡¡£©
A£®425B£®426C£®427D£®428

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®¡°*¡±±íʾһÖÖÔËË㣬¹æ¶¨x*y=$\frac{1}{xy}-\frac{1}{£¨x+1£©£¨y+A£©}$£®Èô1*3=$\frac{1}{12}$£¬Ôò2013*2014=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®£¨1£©Çó12-22+32-42+¡­+992-1002µÄºÍ£®
£¨2£©Ì½¾¿Ê½×Ó12-22+32-42+¡­+£¨-1£©n+1n2µÄºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èçͼ£¬¾ØÐÎABCDÖУ¬AB=4£¬AD=9£¬µãE¡¢F·Ö±ðÊÇBC¡¢ADÉϵĶ¯µã£¬¡ÏFECΪ¶Û½Ç£¬ÑØÖ±ÏßEF·­ÕÛ¾ØÐΣ¬µãC¡¢DµÄ¶ÔÓ¦µã·Ö±ðΪC¡ä¡¢D¡ä£¬ÈôC¡ä¡¢D¡ä¡¢BÔÚͬһÌõÖ±ÏßÉÏ£¬ÇÒ$\frac{BD¡ä}{BC¡ä}$=$\frac{1}{3}$ʱ£¬ÔòAFµÄ³¤Îª3$\frac{5}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÒÑ֪˫ÇúÏßy=$\frac{k}{x}$£¨x£¾0£©Í¼ÏóÉÏÁ½µã£¬¹ýA¡¢BÁ½µã·Ö±ð×÷xÖá¡¢yÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪC¡¢D£¬Á¬½ÓAD¡¢BC£¬Ôò£º
£¨1£©ÈôA¡¢BÁ½µãµÄ×ø±ê·Ö±ðÊÇ£¨1£¬4£©¡¢£¨4£¬1£©£¬ÇóS¡÷OAB£»
£¨2£©Ö¤Ã÷£ºS¡÷ABD=S¡÷ABC£®
£¨3£©Á¬½ÓCD£¬ÅжÏCDÓëABµÄλÖùØϵ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬¡÷ABCÖУ¬AB=AC=4£¬¡ÏBAC=120¡ã£¬ÒÔAΪһ¸ö¶¥µãµÄµÈ±ßÈý½ÇÐÎADEÈƵãAÔÚ¡ÏBACÄÚÐýת£¬AD¡¢AEËùÔÚµÄÖ±ÏßÓëBC±ß·Ö±ð½»ÓÚµãF¡¢G£®ÈôµãB¹ØÓÚÖ±ÏßADµÄ¶Ô³ÆµãΪB¡ä£¬µ±¡÷FGB¡äÊÇÒÔµãGΪֱ½Ç¶¥µãµÄÖ±½ÇÈý½ÇÐÎʱ£¬BFµÄ³¤Îª4$\sqrt{3}$-4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª²»µÈʽ×é$\left\{\begin{array}{l}{3£¨2x-1£©£¼2x+8}\\{2+\frac{3£¨x+1£©}{8}£¾3-\frac{x-1}{4}}\end{array}\right.$£®
£¨1£©ÇóÕâ¸ö²»µÈʽ×éµÄ½â¼¯£»
£¨2£©ÈôÉÏÊö²»µÈʽµÄÕûÊý½âÂú×ã·½³Ìa+6=x-2a£¬ÇóaµÄÖµ£®
£¨3£©Çó´úÊýʽa2014-$\frac{1}{{a}^{2015}}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸