【题目】在平面直角坐标系xOy中,点C是二次函数y=mx2+4mx+4m+1的图象的顶点,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.
(1)请你求出点A、B、C的坐标;
(2)若二次函数y=mx2+4mx+4m+1与线段AB恰有一个公共点,求m的取值范围.
【答案】(1)A(-4,0)和B(0,4);(2)或
【解析】
(1)抛物线解析式配方后,确定出顶点C坐标,对于一次函数解析式,分别令x与y为0求出对应y与x的值,确定出A与B坐标;
(2)分m>0与m<0两种情况求出m的范围即可.
解:(1)y=mx2+4mx+4m+1=m(x+2)2+1,
∴抛物线顶点坐标为C(-2,1),
对于y=x+4,令x=0,得到y=4;y=0,得到x=-4,
直线y=x+4与x轴、y轴交点坐标分别为A(-4,0)和B(0,4);
(2)把x=-4代入抛物线解析式得:y=4m+1,
①当m>0时,y=4m+1>0,说明抛物线的对称轴左侧总与线段AB有交点,
∴只需要抛物线右侧与线段AB无交点即可,
如图1所示,
只需要当x=0时,抛物线的函数值y=4m+1<4,即,
则当时,抛物线与线段AB只有一个交点;
②当m<0时,如图2所示,
只需y=4m+1≥0即可,
解得:,
综上,当或时,抛物线与线段AB只有一个交点.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.
(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;
(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
步数 | 频数 | 频率 |
0≤x<4000 | 8 | a |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | 12 | b |
12000≤x<16000 | c | 0.2 |
16000≤x<20000 | 3 | 0.06 |
20000≤x<24000 | d | 0.04 |
请根据以上信息,解答下列问题:
(1)写出a,b,c,d的值并补全频数分布直方图;
(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,AB=AC,,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.
(1)∠EDB=_____(用含的式子表示)
(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转,与AC边交于点N.
①根据条件补全图形;
②写出DM与DN的数量关系并证明;
③用等式表示线段BM、CN与BC之间的数量关系,(用含的锐角三角函数表示)并写出解题思路.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】尺规作图:过直线外一点作已知直线的平行线.
已知:如图,直线l与直线l外一点P.
求作:过点P与直线l平行的直线.
已知:如图,直线l与直线l外一点P.
求作:过点P与直线l平行的直线.
作法如下:
(1)在直线l上任取两点A、B,连接AP、BP;
(2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M;
(3)过点P、M作直线;
(4)直线PM即为所求.
(1)在直线l上任取两点A、B,连接AP、BP;
(2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M;
(3)过点P、M作直线;
(4)直线PM即为所求.
请回答:PM平行于l的依据是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的函数关系图象,其中M为曲线部分的最低点下列说法错误的是( )
A. △ABC是等腰三角形B. AC边上的高为4
C. △ABC的周长为16D. △ABC的面积为10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是( )
A. a≤﹣1或≤a< B. ≤a<
C. a≤或a> D. a≤﹣1或a≥
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.
(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.
①求证:△OCP∽△PDA;
②若△OCP与△PDA的面积比为1:4,求边AB的长.
(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;
(3)如图2,在(1)的条件下,擦去折痕AO,线段OP,连结BP,动点M在线段AP⊥(点M与点F、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;说明理由;若不变,求出线段EF的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.
(1)求反比例函数的解析式;
(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com