精英家教网 > 初中数学 > 题目详情
在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.
(1)如图1,当点M与点C重合,求证:DF=MN;
(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以cm/s速度沿AC向点C运动,运动时间为t(t>0);
①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.
②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.

【答案】分析:(1)证明△ADF≌△DNC,即可得到DF=MN;
(2)①首先证明△AFE∽△CDE,利用比例式求出时间t=a,进而得到CM=a=CD,所以该命题为真命题;
②若△MNF为等腰三角形,则可能有三种情形,需要分类讨论.
解答:(1)证明:∵∠DNC+∠ADF=90°,∠DNC+∠DCN=90°,
∴∠ADF=∠DCN.
在△ADF与△DNC中,

∴△ADF≌△DNC(ASA),
∴DF=MN.

(2)解:①该命题是真命题.
理由如下:当点F是边AB中点时,则AF=AB=CD.
∵AB∥CD,∴△AFE∽△CDE,

∴AE=EC,则AE=AC=a,
∴t==a.
则CM=1•t=a=CD,
∴点M为边CD的三等分点.
②能.理由如下:
易证△AFE∽△CDE,∴,即,得AF=
易证△MND∽△DFA,∴,即,得ND=t.
∴ND=CM=t,AN=DM=a-t.
若△MNF为等腰三角形,则可能有三种情形:
(I)若FN=MN,则由AN=DM知△FAN≌△NDM,
∴AF=DM,即=t,得t=0,不合题意.
∴此种情形不存在;
(II)若FN=FM,由MN⊥DF知,HN=HM,∴DN=DM=MC,
∴t=a,此时点F与点B重合;
(III)若FM=MN,显然此时点F在BC边上,如下图所示:

易得△MFC≌△NMD,∴FC=DM=a-t;
又由△NDM∽△DCF,∴,即,∴FC=
=a-t,
∴t=a,此时点F与点C重合.
综上所述,当t=a或t=a时,△MNF能够成为等腰三角形.
点评:本题是运动型几何综合题,考查了相似三角形、全等三角形、正方形、等腰三角形、命题证明等知识点.解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)运用分类讨论的数学思想,避免漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•资阳)在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.
(1)如图1,当点M与点C重合,求证:DF=MN;
(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以
2
cm/s速度沿AC向点C运动,运动时间为t(t>0);
①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.
②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在一个边长为a(单位:cm)的正方形ABCD中.
(1)如图1,如果N是AD中点,F为AB中点,连接DF,CN.
①求证:DF=CN;
②连接AC.求DH:HE:EF的值;
(2)如图2,如果点E、M分别是线段AC、CD上的动点,假设点E从点A出发,以
2
cm/s速度沿AC向点C运动,同时点M从点C出发,以1cm/s的速度沿CD向点D运动,运动时间为t(t>0),连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年四川省成都市高新区九年级上学期期末考试数学试卷(解析版) 题型:解答题

在一个边长为a(单位:cm)的正方形ABCD中.

(1)如图1,如果N是AD中点,F为AB中点,连接DF,CN.

①求证:DF=CN;

②连接AC.求DH:HE: EF的值;

(2)如图2,如果点E、M分别是线段AC、CD上的动点,假设点E从点A出发,以cm/s速度沿AC向点C运动,同时点M从点C出发,以1cm/s的速度沿CD向点D运动,运动时间为t(t>0),连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N. 判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由. (4分)

 

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(四川资阳卷)数学(解析版) 题型:解答题

(2013年四川资阳11分)在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.

(1)如图1,当点M与点C重合,求证:DF=MN;

(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以cm/s速度沿AC向点C运动,运动时间为t(t>0);

①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.

②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.

 

查看答案和解析>>

同步练习册答案