【题目】已知二次函数图象的顶点坐标为M(1,0),直线y=x+m与该二次函数的图象交于A,B两点,其中A点的坐标为(3,4),B点在y轴上.P(a,0)是x轴上的一个动点,过P作x轴的垂线分别与直线AB和二次函数的图象交于D、E两点.
(1)求m的值及这个二次函数的解析式;
(2)若点P的横坐标为2,求△ODE的面积;
(3)当0<a<3时,求线段DE的最大值;
(4)若直线AB与抛物线的对称轴交点为N,问是否存在一点P,使以M、N、D、E为顶点的四边形是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
【答案】(1)m=1,y=x2﹣2x+1;(2)S△ODE=2;(3)DE的最大值为;(4)满足题意的点P是存在的,坐标为(2,0)或(
,0)或(
,0).
【解析】
(1)直线y=x+m 经过点A(3,4),4=3+m,m=1,二次函数图象的顶点坐标为M(1,0),即可求解;
(2)把x=2代入y=x2-2x+1 得y=1,E(2,1),把x=2代入y=x+1得y=3,D(2,3),即可求解;
(3)由题意得D(a,a+1),E(a,a2-2a+1),DE=(a+1)-(a2-2a+1)=-(a)2+
,即可求解;
(4)分两种情况:D点在E点的上方、D点在E点的下方,分别求解即可.
解:(1)∵直线y=x+m 经过点A(3,4),
∴4=3+m,
∴m=1,
∵二次函数图象的顶点坐标为M(1,0),
∴设y=a(x﹣1)2
∵抛物线经过A(3,4),
∴a=1,
∴y=x2﹣2x+1;
(2)把x=2代入y=x2﹣2x+1 得y=1,
∴E(2,1),
把x=2代入y=x+1得y=3,
∴D(2,3),
∴DE=3﹣1=2
∴S△ODE=2;
(3)由题意得D(a,a+1),E(a,a2﹣2a+1),
∴DE=(a+1)﹣(a2﹣2a+1)=﹣(a)2+
,
∴当a=(属于0<a<3 范围)时,DE的最大值为
;
(4)∵直线AB:y=x+1,N(1,2),
∴MN=2,
∵要使四边形为平行四边形只要DE=MN.
∴分两种情况:
①D点在E点的上方,则
DE=(a+1)﹣(a2﹣2a+1)=﹣a2+3a,
∴﹣a2+3aspan>=2,
∴a=1(舍去)或a=2;
②D点在E点的下方,则 DE=a2﹣3a=2,
∴a=或
;
综上所述,满足题意的点P是存在的,坐标为(2,0)或(,0)或(
,0).
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象经过点(0,1),对称轴为直线x=﹣1,下列结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c>0;⑤c﹣a>1.其中,正确结论的个数为( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与x轴交于点A(3,0),与y轴交于点B,抛物线
经过点A,B.
(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为线段OA上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N.
①试用含m的代数式表示PN的长;
②m为何值时△ABN面积最大,并求△ABN的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=
的图象上,则k的值为( )
A.4B.﹣4C.8D.﹣8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:
(1)求y与x之间的函数关系式;
(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?
(3)该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度).
(1)作出△ABC绕点A顺时针方向旋转90°后得到的△A1B1C1,并直接写出C1点的坐标;
(2)作出△ABC关于原点O成中心对称的△A2B2C2,并直接写出B2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D是BC边的中点,连接AD,分别过点A,C作AE∥BC,CE∥AD交于点E,连接DE,交AC于点O.
(1)求证:四边形ADCE是矩形;
(2)若AB=10,sin∠COE=,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中的位置如图所示,将△ABC沿y轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2;已知A(﹣1,4),B(﹣2,2),C(0,1)
(1)请依次画出△A1B1C1和△A2B2C2;
(2)若直线A1B2与一个反比例函数图象在第一象限交于点A1,试求直线A1B2和这个反比例函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知平行四边形ABCD中,BDAD,延长AD至点E,使D是AE的中点,连接BE和CE,BE与CD交于点F.
(1)求证:四边形BDEC是矩形;
(2)若AB=6,AD=3,求矩形BDEC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com