精英家教网 > 初中数学 > 题目详情
Rt△ABC在平面直角坐标系中的初始位置如图1所示,∠C=90°,AB=6,AC=3,点A在x轴上由原点O开始向右滑动,同时点B在y轴上也随之向点O滑动,如图2所示;当点B滑动至点O重合时,运动结束.在上述运动过程中,⊙G始终以AB为直径.
精英家教网
(1)试判断在运动过程中,原点O与⊙G的位置关系,并说明理由;
(2)设点C坐标为(x,y),试求出y与x的关系式,并写出自变量x的取值范围;
(3)根据对问题(1)、(2)的探究,请你求出整个过程中点C运动的路径的长.
分析:(1)因为OG始终是⊙G的半径,所以原点O始终在⊙G上;
(2)运动过程中,弧AC的长保持不变,弧AC所对应的圆周角∠AOC保持不变,等于∠XOC,∠xOC=30°,y=
3
x
3
.即自变量x的取值范围是
3
3
2
≤x≤3
3

(3)利用勾股定理可求得,点C运动的路程s=3
4-2
3
解答:精英家教网解:(1)原点O与⊙G的位置关系是:点O在⊙G上;
如图3,连接OG,∵∠AOB是直角,G为AB中点,
∴GO=
1
2
AB=半径,故原点O始终在⊙G上.

(2)∵∠ACB=90°,AB=6,AC=3,∴∠ABC=30°.
连接OC,过点C作CD⊥x轴于点D,如图4,
∴∠AOC=∠ABC=30°,
精英家教网在Rt△ODC中,tan∠COD=
CD
OD
,即tan30°=
y
x

∴y与x的关系式是:y=
3
3
x

自变量x的取值范围是
3
3
2
≤x≤3
3


(3)∵由(2)中的结论可知,点C在与x轴夹角为30°的射线上运动.
∴如图5,点C的运动路径为:C1C2=OC2-OC1=6-3=3;
如图6,点C的运动路径为:C2C3=OC2-OC3=6-3
3

∴总路径为:C1C2+C2C3=3+6-3
3
=9-3
3

精英家教网
点评:主要考查了函数和几何图形的综合运用.解题的关键是会灵活的运用函数图象的性质和交点的意义求出相应的线段的长度或表示线段的长度,再结合具体图形的性质求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•沙坪坝区模拟)如图1,在同一平面内,Rt△ABC≌Rt△DEF,其中∠ACB=∠DFE=90°,BC=EF=3,AC=DF=4,AC与DF重合,△ABC始终保持不动.
(1)将△DEF沿CB(EB)方向平移,直到点E与点B重合为止,设平移的距离为x,两个三角形重叠部分的面积为y,写出y与x之间的函数关系式,并写出自变量x的取值范围;
(2)如图2,将△DEF绕点C逆时针旋转,旋转后得到的三角形为△D′E′F,设D′E′与AC交于点M,当∠ECE′=∠EAC时,求线段CM的长;
(3)如图3,在△DEF绕点C逆时针旋转的过程中,若设D′F所在直线与AB所在直线的交点为N,是否存在点N使△ACN为等腰三角形,若存在,求出线段BN的长,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•呼伦贝尔)如图①,在平面直角坐标系内,Rt△ABC≌Rt△FED,点C、D与原点O重合,点A、F在y轴上重合,∠B=∠E=30°,AC=FD=
3
.△FED不动,△ABC沿直线BE以每秒1个单位的速度向右平移,直到点B与点E重合为止,设移动x秒后两个三角形重叠部分的面积为s.

(1)求出图①中点B的坐标;
(2)如图②,当x=4秒时,点M坐标为(2,
3
3
),求出过F、M、A三点的抛物线的解析式;此抛物线上有一动点P,以点P为圆心,以2为半径的⊙P在运动过程中是否存在与y轴相切的情况?若存在,直接写出P点的坐标;若不存在,请说明理由.
(3)求出整个运动过程中s与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图①,在平面直角坐标系内,Rt△ABC≌Rt△FED,点C、D与原点O重合,点A、F在y轴上重合,∠B=∠E=30°,AC=FD=数学公式.△FED不动,△ABC沿直线BE以每秒1个单位的速度向右平移,直到点B与点E重合为止,设移动x秒后两个三角形重叠部分的面积为s.
作业宝
(1)求出图①中点B的坐标;
(2)如图②,当x=4秒时,点M坐标为(2,数学公式),求出过F、M、A三点的抛物线的解析式;此抛物线上有一动点P,以点P为圆心,以2为半径的⊙P在运动过程中是否存在与y轴相切的情况?若存在,直接写出P点的坐标;若不存在,请说明理由.
(3)求出整个运动过程中s与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2013年湖北省孝感市中考数学模拟试卷(二)(解析版) 题型:解答题

如图①,在平面直角坐标系内,Rt△ABC≌Rt△FED,点C、D与原点O重合,点A、F在y轴上重合,∠B=∠E=30°,AC=FD=.△FED不动,△ABC沿直线BE以每秒1个单位的速度向右平移,直到点B与点E重合为止,设移动x秒后两个三角形重叠部分的面积为s.

(1)求出图①中点B的坐标;
(2)如图②,当x=4秒时,点M坐标为(2,),求出过F、M、A三点的抛物线的解析式;此抛物线上有一动点P,以点P为圆心,以2为半径的⊙P在运动过程中是否存在与y轴相切的情况?若存在,直接写出P点的坐标;若不存在,请说明理由.
(3)求出整个运动过程中s与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2012年内蒙古呼伦贝尔市中考数学试卷(解析版) 题型:解答题

如图①,在平面直角坐标系内,Rt△ABC≌Rt△FED,点C、D与原点O重合,点A、F在y轴上重合,∠B=∠E=30°,AC=FD=.△FED不动,△ABC沿直线BE以每秒1个单位的速度向右平移,直到点B与点E重合为止,设移动x秒后两个三角形重叠部分的面积为s.

(1)求出图①中点B的坐标;
(2)如图②,当x=4秒时,点M坐标为(2,),求出过F、M、A三点的抛物线的解析式;此抛物线上有一动点P,以点P为圆心,以2为半径的⊙P在运动过程中是否存在与y轴相切的情况?若存在,直接写出P点的坐标;若不存在,请说明理由.
(3)求出整个运动过程中s与x的函数关系式.

查看答案和解析>>

同步练习册答案