分析 先过E作EF∥BC,交AC于F,构造等边三角形AEF,再根据SAS判定△BDE≌△FEC,即可得出结论.
解答 解:DE=EC
理由:如图,过E作EF∥BC,交AC于F
∵△ABC是等边三角形
∴AB=AC,∠A=∠ABC=∠ACB=60°
∵EF∥BC
∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°
∴△AEF是等边三角形
∴AE=AF=EF
∵AE=BD,AB=AC
∴BD=EF,BE=CF
∵∠ABC=∠AFE=60°
∴∠EBD=∠EFC=120°
∴△BDE≌△FEC(SAS)
∴DE=EC
点评 本题考查了等边三角形的性质和全等三角形的判定与性质,证明角的关系以及三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:选择题
A. | $\frac{π}{4}{r}^{2}$ | B. | $\frac{4-π}{4}{r}^{2}$ | C. | (4-π)r2 | D. | πr2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 9$\sqrt{3}$m2 | B. | 12$\sqrt{3}$m2 | C. | 15$\sqrt{3}$m2 | D. | 18$\sqrt{3}$m2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 10cm2 | B. | 5$\sqrt{6}$cm2 | C. | 7$\sqrt{3}$cm2 | D. | $\frac{25}{2}$cm2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com