【题目】如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:
①EF=BE+CF;②∠BGC=90°+∠A;③点G到△ABC各边的距离相等;④设GD=m,AE+AF=n,则S△AEF=mn.其中正确的结论有( )
A.①②④B.①③④C.①②③D.①②③④
【答案】D
【解析】
根据平行线的性质和角平分线的定义可得∠EBG=∠EGB,∠FCG=∠CGF,再根据等角对等边即得BE=EG,GF=CF,进而可对①进行判断;
根据角平分线的定义和三角形的内角和即可对②进行判断;
过点G作GM⊥AB于点M,作GH⊥BC于点H,如图1,根据角平分线的性质即可对③进行判断;
连接AG,如图2,则△AEF的面积=△AEG的面积+△AFG的面积,再根据题意和③的结论即可对④进行判断.
解:①∵∠ABC和∠ACB的平分线相交于点G,
∴∠EBG=∠CBG,∠BCG=∠FCG.
∵EF∥BC,
∴∠CBG=∠EGB,∠BCG=∠CGF,
∴∠EBG=∠EGB,∠FCG=∠CGF,
∴BE=EG,GF=CF,
∴EF=EG+GF=BE+CF,故本小题正确;
②∵∠ABC和∠ACB的平分线相交于点G,
∴∠GBC+∠GCB=(∠ABC+∠ACB)=(180°﹣∠A),
∴∠BGC=180°﹣(∠GBC+∠GCB)=180°﹣(180°﹣∠A)=90°+∠A,故本小题正确;
③过点G作GM⊥AB于点M,作GH⊥BC于点H,如图1,
∵GB和GC是∠ABC和∠ACB的平分线,
∴GM=GH,GD=GH,
∴GM=GH=GD,
即点G到△ABC各边的距离相等,故本小题正确;
④连接AG,如图2,∵GD=m,AE+AF=n,则由③知:GM=GD=m,
∴S△AEF=AEGM+AFGD=(AE+AF)m=nm,故本小题正确.
故选:D.
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程:x2﹣2(m+1)x+m2+5=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若原方程的两个实数根为x1、x2, 且满足x12+x22=|x1|+|x2|+2x1x2,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD中AD∥BC,边AB=4,BC=8.将此长方形沿EF折叠,使点D与点B重合,点C落在点G处.
(1)试判断△BEF的形状,并说明理由;
(2)若AE=3,求△BEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将直角的顶点放在正方形的对角线上,使角的一边交于点,另一边交或其延长线于点,求证:;
如图,将直角顶点放在矩形的对角线交点,、分别交与于点、,且平分.若,,求、的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为 1 的正方形组成的网格中,△ ABC的顶点均在格点上,A(3,2), B(4, 3), C(1, 1)
(1)画出△ABC关于y轴对称的图形△ A′B′C′
(2)写出A′、B′、C′的坐标(直接写出答案) A′ ;B′ ;C′ ;
(3)写出△ A′B′C′的面积为 .(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售某种玩具,进货价为元.根据市场调查:在一段时间内,销售单价是元时,销售量是件,而销售单价每上涨元,就会少售出件玩具,超市要完成不少于件的销售任务,又要获得最大利润,则销售单价应定为________元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+3的图象经过点 (-3,0),(2,-5).
(1)试确定此二次函数的解析式;
(2)请你判断点P(-2,3)是否在这个二次函数的图象上?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场将进货价为40元的台灯以50元的销售价售出,平均每月能售出800个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.设每个台灯的销售价上涨元.
(1) 试用含的代数式填空:
①涨价后,每个台灯的利润为 元;
②涨价后,商场的台灯平均每月的销售量为 台;
(2) 如果商场要想销售总利润平均每月达到20000元,商场经理甲说“在原售价每台50元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台50元的基础上再上涨30元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com