精英家教网 > 初中数学 > 题目详情
13.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE=4.5.

分析 根据位似图形的性质得出AO,DO的长,进而得出$\frac{AO}{DO}$=$\frac{AB}{DE}$=$\frac{1}{3}$,求出DE的长即可.

解答 解:∵△ABC与DEF是位似图形,它们的位似中心恰好为原点,已知A点坐标为(1,0),D点坐标为(3,0),
∴AO=1,DO=3,
∴$\frac{AO}{DO}$=$\frac{AB}{DE}$=$\frac{1}{3}$,
∵AB=1.5,
∴DE=4.5.
故答案为:4.5.

点评 此题主要考查了位似图形的性质以及坐标与图形的性质,根据已知点的坐标得出$\frac{AO}{DO}$=$\frac{AB}{DE}$=$\frac{1}{3}$是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx与x轴的正半轴交于点A,抛物线的顶点为B,直线y=kx-6k经过点A、B两点,且tan∠BAO=3.
(1)求抛物线的解析式;
(2)点P在第一象限内对称轴右侧的抛物线上,其横坐标为t,连接OP,交对称轴于点C,过点C作CD∥x轴,交直线AB于点D,连接PD,设线段PD的长为d,求d与x之间的函数关系式,并直接写出自变量t的取值范围;
(3)在(2)的条件下,点E在线段BC上,连接EP,交BD于点F,点G是BE的中点,过点G作GQ∥x轴,交PE的延长线于点Q,当∠OPQ=2∠AOP,且EF=PF时,求点P、Q的坐标,并判断此时点Q是否在(1)中的抛物线上.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.不透明的袋子中各有红、绿2个小球,它们只有颜色上的区别,从袋子中随机摸出一个小球记下颜色后不放回,再随机摸一个,两次都摸到红球的概率为$\frac{1}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知,矩形ABCD中,AB=4cm,AD=2AB,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒.当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值;
②若点P、Q的速度分别为v1、v2(cm/s),点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,试探究a与b满足的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.在一次数学游戏中,老师在A、B、C三个盘子里分别放了一些糖果,糖果数依次为a0、b0、c0,记为G0=(a0,b0,c0).游戏规则如下:若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个(若有两个盘子中的糖果数相同,且都多于第三个盘子中的糖果数,则从这两个盘子字母序在前的盘子中取糖果),记为一次操作.若三个盘子中的糖果数都相同,游戏结束.n次操作后的糖果数记为Gn=(an,bn,cn).小明发现:若G0=(4,8,18),则游戏永远无法结束,那么G2016=(10,11,9).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,AC是正方形ABCD的对角线.点E为射线CB上一个动点(点E不与点C,B重合),连接AE,点F在直线AC上,且EF=AE.

(1)点E在线段CB上,如图1所示;
①若∠BAE=10°,求∠CEF的度数;
②用等式表示线段CD,CE,CF之间的数量关系,并证明.
(2)如图2,点E在线段CB的延长线上;请你依题意补全图2,并直接写出线段CD,CE,CF之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.已知a,b,c满足|2a-4|+|b+2|+$\sqrt{(a-3){b}^{2}}$+a2+c2=2+2ac,则a-b+c的值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.若一次函数y=(1-2m)x+m的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1<y2,且与y轴相交于正半轴,则 m的取值范围是(  )
A.m>0B.m<$\frac{1}{2}$C.0<m<$\frac{1}{2}$D..m>$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在平面直角坐标系xOy中,直线y=-2x+a与y轴交于点C (0,6),与x轴交于点B.
(Ⅰ)求这条直线的解析式;
(Ⅱ)直线AD与(Ⅰ)中所求的直线相交于点D(-1,n),点A的坐标为(-3,0).
①求n的值及直线AD的解析式;
②求△ABD的面积;
③点M是直线AD上的一点(不与点D重合),且点M的横坐标为m,求△DBM的面积S与m之间的关系式.

查看答案和解析>>

同步练习册答案