精英家教网 > 初中数学 > 题目详情
小明骑自行车以15千米/小时的速度在公路上向正北方向匀速行进,如图,出发时,在B点他观察到仓库A在他的北偏东30°处,骑行20分钟后到达C点,发现此时这座仓库正好在他的东南方向,则这座仓库到公路的距离为______千米.(参考数据:
3
≈1.732,结果保留两位有效数字)
过点A作AD⊥BC于点D.
设AD=x,则BD=
3
x.
∵△ACD是等腰直角三角形,
∴CD=AD=x.
∵小明骑自行车以15千米/小时的速度在公路上向正北方向匀速行进,骑行20分钟后到达C点,
∴15×
20
60
=5,
∴BC=5.
3
x+x=5.
∴x=
5(
3
-1)
2
≈1.8(千米).
即仓库到公路的距离为1.8千米.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,小敏、小亮从A,B两地观测空中C处一个气球,分别测得仰角为30°和60°,A,B两地相距100m.当气球沿与BA平行地飘移10秒后到达C′处时,在A处测得气球的仰角为45°.
(1)求气球的高度(结果精确到0.1m);
(2)求气球飘移的平均速度(结果保留3个有效数字).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(A)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.
(1)请你补全这个输水管道的圆形截面;(用圆规、直尺作图,不写作法,但要保留作图痕迹)
(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.
(B)在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下方案(如图①所示):
(1)在测点A处安置测倾器,测得旗杆顶部M的仰角∠MCE=α;
(2)量出测点A到旗杆底部N的水平距离AN=m;
(3)量出测倾器的高度AC=h.
根据上述测量数据,即可求出旗杆的高度MN.
如果测量工具不变,请仿照上述过程,设计一个测量某小山高度(如图②)的方案:
(1)在图②中,画出你测量小山高度MN的示意图(标上适当字母);
(2)写出你设计的方案.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某校组织学生到涪江河某段测量两岸的距离,采用了两种方案收集数据.
方案一:如图,从C点找准对岸一参照点D,使CD垂直于河岸线l,沿河岸行走至E点,测出CE的长度后,再用电子测角器测出CE与ED的夹角α;
方案二:如图,先从河岸上选一点A,测出A到河面的距离h.再用电子测角器测出A点到对岸河面的俯角β.

(1)学生们选用不同的位置测量后得出以下数据,请通过计算填写下表:(精确到0.1米)
方案一:
测量次数123
EC(单位:米)100150200
α76°33′71°35′65°25′
计算得出河宽
(单位:米)
方案二:
测量次数123
EC(单位:米)14.413.812.5
β1°24′2°16′1°56′
计算得出河宽
(单位:米)
(参考数据:tan1°24′=0.0244、tan2°16′=0.0396、tan1°56′=0.0338、tan76°33′=4.1814、tan71°35′=3.0032、tan65°25′=2.1859)
(2)由(1)表中数据计算:
方案一中河两岸平均宽为______米;
方案二中河两岸平均宽为______米;
(3)判断河两岸宽大约为______米;(从下面三个答案中选取,填入序号)
①390~420②420~450③350~480
(4)求出方案一的方差S12和方案二的方差S22,判断用哪种方案测量的误差较小.(精确到1)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

每周一学校都要举行庄严的升国旗仪式,让同学们感受国旗的神圣.升国旗时,小颖同学站在离旗杆底部7米处行注目礼,当国旗升至旗杆顶端时,小颖同学视线的仰角恰为60°.若小颖双眼离地面1.5米,则旗杆的高度为______米.(用含根号的式子表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距8
3
km的C处.
(1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在Rt△ABC中,∠CAB=90°,AD是∠CAB的平分线,tanB=
1
2
,则CD:DB=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

由下列条件解题:在Rt△ABC中,∠C=90°:
(1)已知a=4,b=8,求c.
(2)已知b=10,∠B=60°,求a,c.
(3)已知c=20,∠A=60°,求a,b.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

等腰三角形底边长10cm,周长为36cm,则一底角的正切值为______.

查看答案和解析>>

同步练习册答案