精英家教网 > 初中数学 > 题目详情
28、C、D是线段AB上的两点,点C是AD的中点,AB=10cm,AC=4cm,求DB的长度.
分析:因为C是AD的中点,则可得出AD的值,故DB=AB-AD可求.
解答:解:∵C是AD的中点,AC=4cm,
∴AD=8,
∵AB=10cm,
∴BD=AB-AD=2cm.
点评:像这类题一定要借助图形这样才直观形象.利用中点性质转化线段之间的倍分关系是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知线段AB的长度是a(a>0),点C是线段AB上的一点,线段AC的长是线段AB与CB的长的比例中项,则线段AC的长为
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.
(1)猜想四边形EFGH的形状,直接回答,不必说明理由;
(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;
(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,点C是线段AB上的点,点D是线段BC的中点,若AB=12,AC=8,则CD=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•龙岗区模拟)已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求此抛物线的表达式;
(2)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,
(3)点P是抛物线对称轴上一动点,抛物线上是否存在一点Q,使得以A、B、P、Q为顶点的四边形为平行四边形?如果存在,请直接写出Q点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,C、D是线段AB上的两个点,CD=8cm,M是AC的中点,N是DB的中点,MN=12cm,那么线段AB的长等于
16
16
 cm.

查看答案和解析>>

同步练习册答案