【题目】如图,△ABC中,AB=AC,以边AB为直径作⊙O,交BC于点D,过D作DE⊥AC于点E.
(1)求证:DE为⊙O的切线;
(2)若AB=13,sinB= ,求DE的长.
【答案】
(1)证明:连接OD,
∵O、D分别是AB、BC的中点,
∴OD∥AC,
∴∠ODE=∠DEC=90°,
∴OD⊥DE,
∴DE是⊙O的切线
(2)解:∵AB=13,sinB= ,
∴ ,
∴AD=12,
∴由勾股定理得BD=5,
∴CD=5,
∵∠B=∠C,
∴ ,
∴DE=
【解析】(1)由AB=AC,以边AB为直径作⊙O,根据直径所对的圆周角是直角和等腰三角形的三效合一,得到D是BC的中点,由O是AB的中点,根据三角形中位线定理,得到OD∥AC,由DE⊥AC,得到DE是⊙O的切线;(2)由AB和sinB的值,得到AD的值,由勾股定理得到BD的值,在等腰三角形中∠B=∠C,求出DE的长.
科目:初中数学 来源: 题型:
【题目】早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:
①EF=BE+CF;
②∠BOC=90°+∠A;
③点O到△ABC各边的距离相等;
④设OD=m,AE+AF=n,则.
其中正确的结论是____.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前 ,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:
(1)本次调查共抽查了名学生,两幅统计图中的m= , n=.
(2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?
(3)学校要举办读书知识竞赛,七年(1)班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛学生为1男1女的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段
(1)如图1,点沿线段自点向点以的速度运动,同时点沿线段点向点以的速度运动,几秒钟后,两点相遇?
(2)如图1,几秒后,点两点相距?
(3)如图2,,,当点在的上方,且时,点绕着点以30度/秒的速度在圆周上逆时针旋转一周停止,同时点沿直线自点向点运动,假若点两点能相遇,求点的运动速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.
(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理;
(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,求△ACE为等腰三角形时CE:CD的值;
(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.
图1 图2 图3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△ADE中,AB=AD,AC=AE, ∠BAC=∠DAE,BC交
DE于点O,∠BAD=a.
(1)求证:∠BOD=a.
(2)若AO平分∠DAC, 求证:AC=AD.
(3)若∠C=30°,OE交AC于F,且△AOF为等腰三角形,则a= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com