精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,AB=AC,以边AB为直径作⊙O,交BC于点D,过D作DE⊥AC于点E.

(1)求证:DE为⊙O的切线;
(2)若AB=13,sinB= ,求DE的长.

【答案】
(1)证明:连接OD,

∵O、D分别是AB、BC的中点,

∴OD∥AC,

∴∠ODE=∠DEC=90°,

∴OD⊥DE,

∴DE是⊙O的切线


(2)解:∵AB=13,sinB=

∴AD=12,

∴由勾股定理得BD=5,

∴CD=5,

∵∠B=∠C,

∴DE=


【解析】(1)由AB=AC,以边AB为直径作⊙O,根据直径所对的圆周角是直角和等腰三角形的三效合一,得到D是BC的中点,由O是AB的中点,根据三角形中位线定理,得到OD∥AC,由DE⊥AC,得到DE是⊙O的切线;(2)由AB和sinB的值,得到AD的值,由勾股定理得到BD的值,在等腰三角形中∠B=∠C,求出DE的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映yx之间关系的是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ABC和∠ACB的平分线相交于点O,过点OEFBCABE,交ACF,过点OODACD,下列四个结论:

EF=BE+CF

②∠BOC=90°+A

③点OABC各边的距离相等;

④设OD=mAE+AF=n,则

其中正确的结论是____.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是等边三角形,ADBC边上的高,EAC的中点,PAD上的一个动点,当PCPE的和最小时,∠CPE的度数是_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前 ,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:

(1)本次调查共抽查了名学生,两幅统计图中的m= , n=.
(2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?
(3)学校要举办读书知识竞赛,七年(1)班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛学生为1男1女的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形 中, 轴上, 轴上,且 ,把 沿着 对折得到 轴于点 ,则 点的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知线段

1)如图1,点沿线段自点向点的速度运动,同时点沿线段点向点的速度运动,几秒钟后,两点相遇?

2)如图1,几秒后,点两点相距

3)如图2,当点的上方,且时,点绕着点30/秒的速度在圆周上逆时针旋转一周停止,同时点沿直线点向点运动,假若点两点能相遇,求点的运动速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,动点EF分别从DC两点同时出发,以相同的速度在直线DCCB上移动.

1)如图1,当点E在边DC上自DC移动,同时点F在边CB上自CB移动时,连接AEDF交于点P,请你写出AEDF的数量关系和位置关系,并说明理;

2)如图2,当EF分别在边CDBC的延长线上移动时,连接AEDF,(1)中的结论还成立吗?(请你直接回答,不需证明);连接AC,求ACE为等腰三角形时CECD的值;

3)如图3,当EF分别在直线DCCB上移动时,连接AEDF交于点P,由于点EF的移动,使得点P也随之运动,请你画出点P运动路径的草图.AD=2,试求出线段CP的最大值.

1 2 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△ADE中,AB=AD,AC=AE, ∠BAC=∠DAE,BC交

DE于点O,∠BAD=a.

(1)求证:∠BOD=a.

(2)若AO平分∠DAC, 求证:AC=AD.

(3)若∠C=30°,OE交AC于F,且△AOF为等腰三角形,则a= .

查看答案和解析>>

同步练习册答案