精英家教网 > 初中数学 > 题目详情
已知:如图正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF
(1)求证:△BCE≌△DCF;
(2)若∠FDC=30°,求∠BEF的度数.
证明:∵四边形ABCD是正方形,
∴BC=DC,∠BCD=90°
∵F为BC延长线上的点,
∴∠DCF=90°,
∴∠BCD=∠DCF,
在△BCE和△DCF中,
BC=DC
∠BCD=∠DCF
CE=CF

∴△BCE≌△DCF(SAS);
(2)∵△BCE≌△DCF,
∴∠EBC=∠FDC=30°,
∴∠BEC=60°,
∵∠DCF=90°,CE=CF,
∴∠FEC=45°,
∴∠BEF=∠BEC+∠FEC=60°+45°=105°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为(  )
A.
3
-1
B.3-
5
C.
5
+1
D.
5
-1

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,四边形ABCD是正方形,E为BF上一点,四边形AEFC恰是一个菱形,则∠EAB=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在正方形ABCD中,E、F分别是CB、CD延长线上的点,若EF=BE+DF,求证:∠EAF=135°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知三个边长分别为2、3、5的正方形如图排列,则图中阴影部分面积为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABDE的面积是169平方厘米,正方形CAFG面积是144平方厘米,正方形BCHK的面积是25平方厘米,则阴影四边形AGHP的面积是______平方厘米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1),已知:正方形OABC,A、C分别在x轴、y轴上,点B在第一象限;将一直角三角板的直角顶点置于点B处,设两直角边(足够长)分别交x轴、y轴于点E、F,连接EF.
(1)判断CF与AE的大小关系,并说明理由.
(2)已知F(0,6),EF=10,求点B的坐标.
(3)如图(2),已知正方形OABC的边长为6,若将三角板的直角顶点移到BC的中点M处,旋转三角板;当点F在OC边上时,设CF=x,AE=y,直接写出y与x的函数关系式及自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知:△ABC为边长是4
3
的等边三角形,四边形DEFG为边长是6的正方形.现将等边△ABC和正方形DEFG按如图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,△ABC从图1的位置出发,以每秒1个单位长度的速度沿EF方向向右匀速运动,当点C与点F重合时暂停运动,设△ABC的运动时间为t秒(t≥0).

(1)在整个运动过程中,设等边△ABC和正方形DEFG重叠部分的面积为S,请直接写出S与t之间的函数关系式;
(2)如图2,当点A与点D重合时,作∠ABE的角平分线BM交AE于M点,将△ABM绕点A逆时针旋转,使边AB与边AC重合,得到△ACN.在线段AG上是否存在H点,使得△ANH为等腰三角形.如果存在,请求出线段EH的长度;若不存在,请说明理由.
(3)如图3,若四边形DEFG为边长为4
3
的正方形,△ABC的移动速度为每秒
3
个单位长度,其余条件保持不变.△ABC开始移动的同时,Q点从F点开始,沿折线FG-GD以每秒2
3
个单位长度开始移动,△ABC停止运动时,Q点也停止运动.设在运动过程中,DE交折线BA-AC于P点,则是否存在t的值,使得PC⊥EQ,若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案