精英家教网 > 初中数学 > 题目详情

如图,△PQR和△P′Q′R′,是两个全等的等边三角形,它们的重叠部分是一个六边形ABCDEF,设这个六边形的边长为AB=a1,BC=b1,CD=a2,DE=b2,EF=a3,FA=b3.求证:a12+a22+a32=b12+b22+b32

解:如右图所示,
∵△PQR和△P′Q′R′是等边三角形,
∴∠P=∠Q=∠R=∠P′=∠Q′=∠R′=60°,
又∵∠ABP′=∠CBQ,∠BCQ=∠DCQ′,∠Q′DC=∠EDR,
∠DER=∠FER′,∠EFR′=∠AFP,∠FAP=∠BAP′,
∴△AP′B∽△CQB∽△CQ′D∽△ERD∽△ER′F∽△APF,
它们的面积比是相似比的平方,设比例系数为k,
则S△AP′B=AB2k=a12•k,S△CQB=CB2•k=b12•k,
S△CQ′D=CD2•k=a22•k,S△ERD=ED2•k=b22•k,
S△ER′F=EF2•k=a32•k,S△APF=FA2•k=b32•k,
由于两正三角形重叠部分应有相等面积,
故(a12+a22+a32)k=(b12+b22+b32)k,
即a12+a22+a32=b12+b22+b32
分析:根据△PQR和△P′Q′R′是等边三角形,求证△AP′B∽△CQB∽△CQ′D∽△ERD∽△ER′F∽△APF,利用它们的面积比是相似比的平方,设比例系数为k,由于两正三角形重叠部分应有相等面积,故(a12+a22+a32)k=(b12+b22+b32)k,即可证明.
点评:此题考查学生对相似三角形的判定与性质和等边三角形的性质的理解和掌握,但是此题步骤繁琐,特别是多个三角形相似,而且用到相似比是面积比的平方,更给此题增加了难度,因此属于难题,
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,△PQR和△P′Q′R′,是两个全等的等边三角形,它们的重叠部分是一个六边形ABCDEF,设这个六边形的边长为AB=a1,BC=b1,CD=a2,DE=b2,EF=a3,FA=b3.求证:a12+a22+a32=b12+b22+b32

查看答案和解析>>

科目:初中数学 来源: 题型:

A、B两地相距50km,甲、乙两人在某日同时接到通知,都要从A到B地且行驶路线相同,甲骑自行车从A地出发驶往B地,乙也于同日骑摩托车从A地出发驶往B地,如图折线PQR和线段MN分别表示甲、乙两人所行驶的里程数s(km)与接到通知后的时间t(时)之间的函数关系的图象.
(1)接到通知后,甲出发多少小时后,乙才出发?
(2)求乙行驶多少小时追上了甲,这时两人距B地还有多远?
(3)从图中分析,若甲按原方式运动,乙保持原来速度且乙接到通知后4小时出发,问甲、乙两人途中是否相遇?为什么?

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:044

A,B两地相距50km,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车从A地出发驶往B地,如图折线PQR和线段MN分别表示甲和乙所行驶的里程S与该日下午时间t之间关系.

(1)甲出发多少小时,乙才开始出发?

(2)乙行驶多少小时就追上了甲,这时两人离B地还有多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

A、B两地相距50km,甲、乙两人在某日同时接到通知,都要从A到B地且行驶路线相同,甲骑自行车从A地出发驶往B地,乙也于同日骑摩托车从A地出发驶往B地,如图折线PQR和线段MN分别表示甲、乙两人所行驶的里程数s(km)与接到通知后的时间t(时)之间的函数关系的图象.
(1)接到通知后,甲出发多少小时后,乙才出发?
(2)求乙行驶多少小时追上了甲,这时两人距B地还有多远?
(3)从图中分析,若甲按原方式运动,乙保持原来速度且乙接到通知后4小时出发,问甲、乙两人途中是否相遇?为什么?

查看答案和解析>>

同步练习册答案