精英家教网 > 初中数学 > 题目详情
9、如图所示,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别为E,F,连接EF,EF与AD交于点G,求证:AD垂直平分EF.
分析:先证△AED≌△AFD得出AE=AF,得出△AEF为等腰三角形,然后根据SAS证得△AEG≌△AFG,继而可证得EG=FG,AG是△AEF的中线根据三线合一定理可知AD垂直平分EF.
解答:证明:由AD是∠BAC的平分线,可得∠EAD=∠FAD,
又∵∠DEA=∠DFA=90°,AD为公共边,
∴可证得△AED≌△AFD.
∴AE=AF,可知△AEF为等腰三角形.
由AE=AF,AG为公共边,∠EAD=∠FAD,
∴△AEG≌△AFG(SAS).
∴可得EG=FG.
∴AG是△AEF的中线.
又∵等腰三角形的三线合一,
∴AD垂直平分EF.
点评:本题考查等腰三角形的性质,及线段垂直平分的性质,是道难度较大的题目,要仔细思考.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,AD是△ABC中BC边上的中线,已知△ABC的面积为12,则△ACD的面积等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AD是△ABC的中线,AB=6cm,AC=5cm,求△ABD和△ADC的周长的差.

查看答案和解析>>

科目:初中数学 来源: 题型:

55、如图所示,AD是∠BAC的平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,且BD=CD.
求证:BE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、已知如图所示,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,四边形AEDF是菱形吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,AD是△ABC的高,AE是⊙O的直径,A,B,C三点都在圆上,∠DAC=30°,则∠BAE为(  )

查看答案和解析>>

同步练习册答案