精英家教网 > 初中数学 > 题目详情
如图,△ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且ED=EC.若△ABC的边长为4,AE=2,则BD的长为( )

A.2
B.3
C.
D.+1
【答案】分析:延长BC至F点,使得CF=BD,证得△EBD≌△EFC后即可证得∠B=∠F,然后证得AC∥EF,利用平行线分线段成比例定理证得CF=EA后即可求得BD的长.
解答:解:延长BC至F点,使得CF=BD,
∵ED=EC,
∴∠EDC=∠ECD,
∴∠EDB=∠ECF
∴△EBD≌△EFC
∴∠B=∠F
∵△ABC是等边三角形,
∴∠B=∠ACB,
∴∠ACB=∠F,
∴AC∥EF,
=
∵BA=BC,
∴AE=CF=2,
∴BD=AE=CF=2
故选A.
点评:本题考查了等腰三角形及等边三角形的性质,解题的关键是正确的作出辅助线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,△ABC为等边三角形,P为三角形内一点,将△ABP绕A点逆时针旋转60°后与△ACP′重合,若AP=3,则PP′=
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.
(1)求证:△ACD≌△CBF;
(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD与Q,PQ=4,PE=1
(1)求证∠BPQ=60°
(2)求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边三角形,D、F分别为CB、BA上的点,且CD=BF,以AD为一边作等边三角形ADE.
①△ACD与△CBF是全等三角形吗?说说你的理由.
②ED=FC吗?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边△,EC=ED,∠CED=120゜,P为BD的中点,求证:AE=2PE.

查看答案和解析>>

同步练习册答案