精英家教网 > 初中数学 > 题目详情
(1)用棋子按下列方式摆图形,依照此规律,第n个图形有
n(3n-1)
2
n(3n-1)
2
枚棋子.
(2)观察下列等式:
第一行     3=4-1
第二行     5=9-4
第三行    7=16-9
第四行    9=25-16

按照上述规律,第n行的等式为
(n+1)2-n2
(n+1)2-n2

(3)计算:(-
1
4
2011×42012
分析:(1)对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
(2)把题目中的式子用含n的形式分别表示出来,从而寻得第n行等式为2n+1=(n+1)2-n2.即等号前面都是奇数,可以表示为2n+1,等号右边表示的是两个相邻数的平方差.
(3)利用积的乘方运算性质得出原式=(-
1
4
2011×42011×4进而求出即可.
解答:解:(1)设第n个图形的棋子数为Sn.
第1个图形,S1=1;
第2个图形,S2=1+4;
第3个图形,S3=1+4+7;

第n个图形,Sn=1+4+7+…+(3n-2)=
n(3n-1)
2

故答案为:
n(3n-1)
2


(2)第一行3=1×2+1=22-12
第二行5=2×2+1=32-22
第三行7=3×2+1=42-32
第四行9=4×2+1=52-42
第n行2n+1=(n+1)2-n2
故答案为:(n+1)2-n2

(3)原式=(-
1
4
2011×42011×4
=[(-
1
4
)×4]2011×4
=(-1)2011×4
=-1×4
=-4.
点评:此题主要考查了图形的变化类问题同时还考查了学生通过特例分析从而归纳总结出一般结论的能力和积的乘方有关计算等知识,关键规律为等号前面都是奇数,可以表示为2n+1,等号右边表示的是两个相邻数的平方差.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

用棋子按下列方式摆图形,依照此规律,第n个图形有
n(3n-1)
2
n(3n-1)
2
枚棋子.

查看答案和解析>>

科目:初中数学 来源: 题型:

用棋子按下列方式摆图形,依此规律,第6个图形比第5个图形多
16
16
枚棋子.

查看答案和解析>>

科目:初中数学 来源: 题型:

用棋子按下列方式摆图形,依此规律,第6个图形比第5个图形多(  )枚棋子.

查看答案和解析>>

科目:初中数学 来源: 题型:

用棋子按下列方式摆图形,照此规律,第n个图形比第(n-1)个图形多
(n+1)2
2
(n+1)2
2
枚棋子.

查看答案和解析>>

同步练习册答案