精英家教网 > 初中数学 > 题目详情
18、在?ABCD中,∠A+∠C=270°,则∠B=
45°
,∠C=
135°
分析:根据平行四边形对角相等的性质,先可求出∠C,再根据平行四边形邻角互补求出∠B.
解答:解:∵已知平行四边形ABCD,
∴∠A=∠C,∠B+∠C=180°,
又已知,∠A+∠C=270°,
∴2∠C=270°,
∠C=135°,
∴∠B=180°-∠C=180°-135°=45°,
故答案为:∠C=135°,∠B=45°.
点评:此题主要考查的是运用平行四边形的性质求解问题,其关键是运用了平行四边形对角相等的性质和平行四边形邻角互补求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、在?ABCD中,若∠A=3∠B,则∠D=
45°

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在?ABCD中,E、F分别为边AB、CD的中点,连接DE、BF、BD.
(1)求证:△ADE≌△CBF;
(2)求证:四边形BEDF是平行四边形;
(3)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,EF∥AB,MN∥BC,MN与EF交于点O,且O点在对角线上,图中面积相等的四边形有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,BD为对角线,EF垂直平分BD分别交AD、BC的于点E、F,交BD于点O.

(1)试说明:BF=DE;
(2)试说明:△ABE≌△CDF;
(3)如果在?ABCD中,AB=5,AD=10,有两动点P、Q分别从B、D两点同时出发,沿△BAE和△DFC各边运动一周,即点P自B→A→E→B停止,点Q自D→F→C→D停止,点P运动的路程是m,点Q运动的路程是n,当四边形BPDQ是平行四边形时,求m与n满足的数量关系.(画出示意图)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.
(1)求证:∠BAE=∠CDF.
(2)判断四边形AEFD的形状并说明理由.

查看答案和解析>>

同步练习册答案