精英家教网 > 初中数学 > 题目详情

已知,抛物线y=ax2-2ax与x轴交于A、B两点(点A在点B的右侧),且抛物线与直线y=-2ax-1的交点恰为抛物线的顶点C.
(1)求a的值;
(2)如果直线y=-x+b(数学公式)与x轴交于点D,与线段BC交于点E,求△CDE面积的最大值;
(3)在(2)的结论下,在x轴下方,是否存在点F,使△BDF与△BCD相似?如果存在,请求出点F的坐标;不存在,请说明理由.

解:(1)∵y=ax2-2ax=ax(x-2),
又∵抛物线y=ax2-2ax与x轴交于A、B两点(点A在点B的右侧),
∴A(2,0),B(0,0),顶点C(1,-a),
∵抛物线与直线y=-2ax-1的交点恰为抛物线的顶点C,
∴-2a-1=-a,
解得:a=-1.

(2)如图1,由(1)得直线BC的解析式为y=x,
∵直线y=-x+b()与x轴交于点D,与线段BC交于点E,
∴D(b,0),E(),
∴S△CDE=S△CBD-S△BDE=×b×1-×b×=-(b-1)2+
∵当b>1时,s随着b的增大而减小,
≤b≤
∴当b=时,△CDE面积最大,
最大值为:--1)2+=

(3)如图2,△BCD中,BC=BD=,∠CBD=45°,
在x轴下方存在点F,使△BDF与△BCD全等,即△BDF与△BCD相似,
∴F2(1,-1),
过点F1作F1M⊥OD于M,
∵DF1=OD=OC=,∠ODF1=∠CBD=45°,
∴F1M=DM=1,
∴F1-1,-1),
过F3N⊥BD于N,过点C作CG⊥BD于G,
∴△CGD∽△F3ON,
∴CG:F3N=GD:BG,
∵GD=-1,CG=1,BG=

∴F3G=1+
∴F3,-1-).
∴存在点F1-1,-1),F2(1,-1),F3,-1-),使△BDF与△BCD相似.
分析:(1)由抛物线y=ax2-2ax与x轴交于A、B两点(点A在点B的右侧),即可得A(2,0),B(0,0),顶点C(1,-a),又由抛物线与直线y=-2ax-1的交点恰为抛物线的顶点C,即可得方程-2a-1=-a,则可求得a的值;
(2)由(1)得直线BC的解析式为y=x,又由直线y=-x+b()与x轴交于点D,与线段BC交于点E,可得D(b,0),E(),则可得S△CDE=S△CBD-S△BDE=-(b-1)2+,则可求得△CDE面积的最大值;
(3)分别从在x轴下方存在点F,使△BDF与△BCD全等,即△BDF与△BCD相似,与△BCD∽△FBD去分析,即可求得答案.
点评:此题属于二次函数的综合题,考查了待定系数法求函数的解析式、相似三角形的判定与性质,二次函数的最值问题等知识.此题难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:抛物线y=x2-(a+b)x+
c2
4
,其中a、b、c是△ABC的∠A、∠B、∠C的对边.
(1)求证:抛物线与x轴必有两个不同交点;
(2)设直线y=ax-bc与抛物线交于E、F两点,与y轴交于点M,抛物线与y轴交于点N,若抛物线的对称轴为x=a,△MNE与△MNF的面积比为5:1,求证:△ABC是等边三角形;
(3)在(2)的条件下,设△ABC的面积为
3
,抛物线与x轴交于点P、Q,问是否精英家教网存在过P、Q两点且与y轴相切的圆?若存在,求出圆的圆心坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令k=
c
a
,试问:是否存在实数k,使线段A1B1的长为4
2
.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•贵阳)已知:直线y=ax+b过抛物线y=-x2-2x+3的顶点P,如图所示.
(1)顶点P的坐标是
(-1,4)
(-1,4)

(2)若直线y=ax+b经过另一点A(0,11),求出该直线的表达式;
(3)在(2)的条件下,若有一条直线y=mx+n与直线y=ax+b关于x轴成轴对称,求直线y=mx+n与抛物线y=-x2-2x+3的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:抛物线数学公式,其中a、b、c是△ABC的∠A、∠B、∠C的对边.
(1)求证:抛物线与x轴必有两个不同交点;
(2)设直线y=ax-bc与抛物线交于E、F两点,与y轴交于点M,抛物线与y轴交于点N,若抛物线的对称轴为x=a,△MNE与△MNF的面积比为5:1,求证:△ABC是等边三角形;
(3)在(2)的条件下,设△ABC的面积为数学公式,抛物线与x轴交于点P、Q,问是否存在过P、Q两点且与y轴相切的圆?若存在,求出圆的圆心坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年四川省绵阳市南山中学自主招生考试数学试卷(解析版) 题型:解答题

已知:抛物线,其中a、b、c是△ABC的∠A、∠B、∠C的对边.
(1)求证:抛物线与x轴必有两个不同交点;
(2)设直线y=ax-bc与抛物线交于E、F两点,与y轴交于点M,抛物线与y轴交于点N,若抛物线的对称轴为x=a,△MNE与△MNF的面积比为5:1,求证:△ABC是等边三角形;
(3)在(2)的条件下,设△ABC的面积为,抛物线与x轴交于点P、Q,问是否存在过P、Q两点且与y轴相切的圆?若存在,求出圆的圆心坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案