精英家教网 > 初中数学 > 题目详情
11.解下列方程:
(1)2x+3=x+5;                     
(2)$\frac{3y-1}{4}$-1=$\frac{5y-7}{6}$.

分析 (1)方程移项合并,把x系数化为1,即可求出解;
(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.

解答 解:(1)移项合并得:x=2;  
(2)去分母得:9y-3-12=10y-14,
移项合并得:y=-1.

点评 此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).
(1)求直线AB的表达式.
(2)若直线AB上有一动点C,且S△BOC=2,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.
(1)求k的取值范围:
(2)若k为正整数,且该方程的根都是整数,求k的值及该方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知AB⊥CD,△ABD和△BCE都是等腰直角三角形,CD=17,BE=5,则AC的长为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.当k为何值时,多项式(x2-3kxy-3y2)+($\frac{1}{3}$xy-8)中不含xy项.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:
(1)(-2a2)(3ab2-5ab3);
(2)(-2ab)(3a2-2ab-4b2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图1,抛物线y=-$\frac{1}{3}$x2-$\frac{2\sqrt{3}}{3}$x+3与x轴交于A、B两点(点A在点B的右侧),交y轴于点C,点D的坐标为(0,-1),直线AD交抛物线于另一点E,点P是第二象限抛物线上的一点,作PQ∥y轴交直线AE于Q,作PG⊥AD于G,交x轴于点H
(1)求线段DE的长;
(2)设d=PQ-$\frac{\sqrt{3}}{4}$PH,当d的值最大时,在直线AD上找一点K,使PK+$\frac{1}{2}$EK的值最小,求出点K的坐标和PK+$\frac{1}{2}$EK的最小值;
(3)如图2,当d的值最大时,在x轴上取一点N,连接PN,QN,将△PNQ沿着PN翻折,点Q的对应点为Q′,在x轴上是否存在点N,使△AQQ′是等腰三角形?若存在,求出点N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在△ABC中,∠C=90°,∠BAC=30°,BD平分∠ABC,交AC于点D,AP平分∠BAC,交BD于点P,试求∠APD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α,D是△ABC外一点,且△BOC≌△ADC,连接OD.
(1)△COD是什么三角形?说明理由;
(2)当α为多少度时,△AOD是直角三角形?
(3)当α为多少度时,△AOD是等腰三角形?

查看答案和解析>>

同步练习册答案