精英家教网 > 初中数学 > 题目详情
如图,△AOB中,∠A=∠B,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点精英家教网E、F
(1)求证:AB是⊙O的切线;
(2)当△AOB腰上的高等于底边的一半,且AB=4
3
时,求劣弧ECF的长及阴影部分的面积.
分析:(1)由OA=OB,AC=BC,即可推出OC⊥AB,即AB是⊙O的切线;
(2)根据三角函数公式及勾股定理求得∠A=30°,OC=2,又因为OA=OB,从而得出∠AOB=120度.由弧长公式可求得
ECF
的长为
4
3
π
.由三角形面积及扇形面积可求出阴影部分面积.
解答:精英家教网解:(1)连接OC.
∵OA=OB,AC=BC,
∴OC⊥AB.
∴AB是⊙O的切线.

(2)过B点作BD⊥AO,交AO的延长线于D点.
由题意有AB=2BD,AB=4
3

在Rt△ABD中,根据正弦定义 sinA=
BD
AB
=
1
2

∴∠A=30度.
在Rt△ACO中,AC=
1
2
AB=2
3
,∠A=30°,
则AO=2OC.
由勾股定理,求得OC=2.
∵OA=OB,且∠A=30°,
∴∠AOB=120度.
由弧长公式可求得
ECF
的长为
4
3
π

S阴影=S△OAB-S扇形0EF=4
3
×2÷2-π•22
1
3
=4
3
-
4
3
π.
点评:此题考查学生对切线的判定,弧长公式,及解直角三角形的综合运用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、如图,△AOB中,∠B=30度.将△AOB绕点O顺时针旋转52°得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△AOB中,OA=3cm,OB=1cm,将△AOB绕点O逆时针旋转90°到△A′OB′,那么AB扫过的区域(图中阴影部分)的面积是
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△AOB中,OA=OB,∠AOB=90゜,BD平分∠ABO交OA于D,AE⊥BD于E.
求证:BD=2AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△AOB中,OA=OB=10,∠AOB=120°,以O为圆心,5为半径的⊙O与OA、OB相交.
求证:AB是⊙O的切线.

查看答案和解析>>

同步练习册答案