精英家教网 > 初中数学 > 题目详情

如图,PA、PC分别是△ABC外角∠MAC与∠NCA的平分线,并交于点P,PD⊥BM于点D,PF⊥BN于点F,求证:BP是∠MBN的平分线.

证明:过点P作PE⊥AC于点E.
∵AP平分∠MAC,PD⊥BM,
∴DP=EP(角平分线的性质).
同理PE=PF,
∴PD=PF,又PD⊥BM,PF⊥BN,
∴P在∠MBN的角平分线上,
∴PB平分∠MBN.
分析:过点P作PE⊥AC于点E,已知AP平分∠MAC,PD⊥BM,根据角平分线上点到角两边的距离相等得到DP=EP,同理可得PE=PF,从而可推出PD=PF,则点P在∠MBN的角平分线上,即PB平分∠MBN.
点评:此题主要考查学生对三角形的角平分线的性质及三角形外角性质的综合运用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直线y=kx+8分别与x轴、y轴相交于A、B两点,O为坐标原点,A点的坐标为(4,0).
(1)求k的值;
(2)若P为y轴(B点除外)上的一点,过P作PC⊥y轴交直线AB于C.设线段PC的长为l,点P的坐标为(0,m).
①如果点P在线段BO(B点除外)上移动,求l与m的函数关系式,并写出自变量m的取值范围;
②如果点P在射线BO(B、O两点除外)上移动,连接PA,则△APC的面积S也随之发生变化.请你在面积S的整个变化过程中,求当m为何值时,S=4.

查看答案和解析>>

科目:初中数学 来源: 题型:

类比学习:
我们已经知道,顶点在圆上,且角的两边都和圆相交的角叫做圆周角,如图1,∠APB就是圆周角,弧AB是∠APB所夹的弧.
类似的,我们可以把顶点在圆外,且角的两边都和圆相交的角叫做圆外角,如图2,∠APB就是圆外角,弧AB和弧CD是∠APB所夹的弧,
新知探索:
图(2)中,弧AB和弧CD度数分别为80°和30°,∠APB=
25
25
°,
归纳总结:
(1)圆周角的度数等于它所夹的弧的度数的一半;
(2)圆外角的度数等于
所夹两弧的度数差的一半
所夹两弧的度数差的一半

新知应用:
直线y=-x+m与直线y=-
3
3
x+2相交于y轴上的点C,与x轴分别交于点A、B.经过A、B、C三点作⊙E,点P是第一象限内⊙E外的一动点,且点P与圆心E在直线AC的同一侧,直线PA、PC分别交⊙E于点M、N,
设∠APC=θ.
①求A点坐标;         ②求⊙E的直径;
③连接MN,求线段MN的长度(可用含θ的三角函数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•广东)如图,PA、PB是⊙O的两条切线,其切点分别为A、B,PO交AB于点D,PO的延长线交⊙O于点C,根据图形给出下面四个结论:①∠PAB=∠PCA;②PA2=PD•PC;③∠PAB=∠PBA;④∠AOD=2∠ACO.
其中错误的结论的个数为(  )

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:044

已知:如图,PA,PB分别与⊙O相切于A,B,

PC∶AC.

查看答案和解析>>

科目:初中数学 来源: 题型:013

如图:PA、PC分别切⊙O于A、C两点,∠APC=120°,则圆周角∠ABC的度数是

[    ]

A.60°        B.30°       C.15°       D.60°

查看答案和解析>>

同步练习册答案