精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的边长为4厘米,动点P从点A出发沿AB边由AB1厘米/秒的速度匀速移动(点P不与点A、B重合),动点Q从点B出发沿拆线BC-CD2厘米/秒的速度匀速移动。点P、Q同时出发,当点P停止运动,点Q也随之停止。联结AQBD于点E。设点P运动时间为t秒。

(1)t表示线段PB的长;

(2)当点Q在线段BC上运动时,t为何值时,∠BEP和∠BEQ相等;

(3)t为何值时,线段P、Q之间的距离为2cm.

【答案】(1)PB=4-t;(2)t=;(3)t=2

【解析】

(1)根据正方形的性质和已知条件即可求解;(2)由正方形的性质得出∠PBE=∠QBE,再证明△BEP≌△BEQ,根据全等三角形的性质可得BP=BQ,即可得出方程4-t=2t,解方程即可求得t值;(3)分两种情况讨论:①当时和②当时,根据已知条件,利用勾股定理得出方程,解方程即可求得t的值.

(1)PB=AB-AP,

∵AB=4,AP=1×t=t,

∴PB=4-t.

(2)当t=时,∠BEP和∠BEQ相等,理由如下:

∵四边形ABCD正方形,

对角线BD平分∠ABC,

PBE=∠QBE,

当∠BEP=∠BEQ

在△BEP和△BEQ,

∴△BEP≌△BEQ,

∴BP=BQ,

4-t=2t,

解得t=

(3)分两种情况讨论

①当 即当P点在AB,Q点在BC上运动时

连接PQ,如图1所示

根据勾股定理得

解得t=2t=(负值舍去);

②当 时,即当P点在AB,Q点在CD上运动时,

PM⊥CDM,如图2所示:

∴PM=BC=4,CM=BP=4-t,MQ=2t-4-(4-t)=3t-8,

根据勾股定理得

解得t=2(舍去)或t=

综上,当t=2t=,PQ之间的距离为2cm.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,对正方形纸片ABCD进行如下操作:
(i)过点D任作一条直线与BC边相交于点E1(如图①),记∠CDE11
(ii)作∠ADE1的平分线交AB边于点E2(如图②),记∠ADE22
(iii)作∠CDE2的平分线交BC边于点E3(如图③),记∠CDE33
按此作法从操作(2)起重复以上步骤,得到α1 , α2 , …,αn , …,现有如下结论:①当α1=10°时,α2=40°;②2α43=90°; ③当α5=30°时,△CDE9≌△ADE10;④当α1=45°时,BE2=
其中正确的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系上,△ABC的顶点A和C分别在x轴、y轴的正半轴上,且AB∥y轴,点B(1,3),将△ABC以点B为旋转中心顺时针方向旋转90°得到△DBE,恰好有一反比例函数y= 图像恰好过点D,则k的值为( )

A.6
B.﹣6
C.9
D.﹣9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子长度的,则梯子比较稳定,如图,AB为一长度为6米的梯子.

(1)当梯子稳定摆放时,它的顶端能达到5.7米高的墙头吗?

(2)如图2,若梯子底端向左滑动(3﹣2)米,那么梯子顶端将下滑多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:
(1)在这次抽样调查中,一共调查了多少名学生?
(2)请把折线统计图(图1)补充完整;
(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;
(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在某旅游景区上山的一条小路上,有一些断断续续的台阶.下图是其中的甲、乙两段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:

(1)两段台阶路有哪些相同点和不同点?

(2)哪段台阶路走起来更舒服?为什么?

(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.

图中的数字表示每一级台阶的高度(单位:cm),并且数据15,16,16,14,14,15的方差s2,数据11,15,18,17,10,19的方差s2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.

(1)求此抛物线的解析式;
(2)求证:AO=AM;
(3)探究:
①当k=0时,直线y=kx与x轴重合,求出此时 + 的值;
②试说明无论k取何值, + 的值都等于同一个常数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△AOB中,∠AOB=90°,AO=6厘米,BO=8厘米,分别以OB和OA所在直线为x轴,y轴建立平面直角坐标系,如图所示,动点M从点A开始沿AO方向以2厘米/秒的速度向点O移动,同时动点N从点O开始沿OB方向以4厘米/秒的速度向点B移动(其中一点到达终点时,另一点随即停止移动).

(1)求过点A和点B的直线表达式;
(2)当点M移动多长时间时,四边形AMNB的面积最小?并求出四边形AMNB面积的最小值;
(3)在点M和点N移动的过程中,是否存在以O,M,N为顶点的三角形与△AOB相似?若存在,请求出点M 和点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在校园文化建设中,某学校原计划按每班5幅订购了“名人字画”共90幅.由于新学期班数增加,决定从阅览室中取若干幅“名人字画”一起分发,如果每班分4幅,则剩下17幅;如果每班分5幅,则最后一班不足3幅,但不少于1幅.
(1)该校原有的班数是多少个?
(2)新学期所增加的班数是多少个?

查看答案和解析>>

同步练习册答案