精英家教网 > 初中数学 > 题目详情

【题目】 如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°AC=BCOA=1OC=4,抛物线y=x2+bx+c经过AB两点.

1)求抛物线的解析式;

2)点E是直角△ABC斜边AB上一动点(点AB除外),过点Ex轴的垂线交抛物线于点F,当线段EF的长度最大时,求点EF的坐标;

3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.

【答案】(1)y=x22x3;(2)点E),F);(3)存在,P1),P2),P3).

【解析】

1)根据AC=BC,求出BC的长,进而得到点AB的坐标,利用待定系数法即可求得抛物线的解析式;
2)利用待定系数法求出直线AB的解析式,用含m的式表示出EF的坐标,求出EF的长度最大时m的值,即可求得EF的坐标;
3)分两种情况:∠E-90°和∠F=90°,分别得到点P的纵坐标,将纵坐标代入抛物线解析式,即可求得点P的值.

解:(1)∵OA=1OC=4AC=BC

BC=5

A(﹣10),B45),

抛物线y=x2+bx+c经过AB两点,

,解得:

y=x22x3

2)设直线AB解析式为:y=kx+b

直线经过点AB两点,

,解得:

∴直线AB的解析式为:y=x+1

设点E的坐标为(mm+1),则点Fmm22m3),

EF=m+1m2+2m+3=m2+3m+4=﹣(m2+

∴当EF最大时,m=

∴点E),F);

3)存在.

①当∠FEP=90°时,点P的纵坐标为

x22x3=,解得:x1=x2=

∴点P1),P2),

②当∠EFP=90°时,点P的纵坐标为

x22x3=,解得:x1=x2=(舍去),

∴点P3),

综上所述,P1),P2),P3).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图O是△ABC的外接圆,∠ABC=45°,延长BCD,连接AD,使得ADOCABOCE

(1)求证:ADO相切;

(2)若AE=2CE=2.求O的半径和AB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将二次函数y (x2)21的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1m)B(4n)平移后对应点分别是A′B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,...,则正方形铁片连续旋转2019次后,点P的坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列方程中,为一元二次方程的是(

A. x=2y-3 B. +1=3 C. x2+3x-1=x2+1 D. x2=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,过点,垂足为点,过点分别作,垂足分别为.连接交线段于点.

1)在图一中,,有几组相似的三角形,请写出来;

2)在图二中,证明:

3)如果,试求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于点G,BG=4,则△EFC的周长为( )

A. 11 B. 10 C. 9 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次活动共调查了   人;在扇形统计图中,表示支付宝支付的扇形圆心角的度数为   

(2)将条形统计图补充完整.观察此图,支付方式的众数   ”;

(3)在一次购物中,小明和小亮都想从微信”、“支付宝”、“银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,动点P从点A开始沿边ABB的速度移动(不与点B重合),动点Q从点B开始沿边BCC的速度移动(不与点C重合),如果PQ分别从AB同时出发,设运动的时间为,四边形APQC的面积为

1)求yx之间的函数关系式;写出自变量x的取值范围;

2)当四边形APQC的面积等于时,求x的值;

3)四边形APQC的面积能否等于?若能,求出运动的时间,若不能,说明理由.

查看答案和解析>>

同步练习册答案