【题目】 如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点.
(1)求抛物线的解析式;
(2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标;
(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.
【答案】(1)y=x2﹣2x﹣3;(2)点E(,),F(,);(3)存在,P1(,),P2(,),P3(,).
【解析】
(1)根据AC=BC,求出BC的长,进而得到点A,B的坐标,利用待定系数法即可求得抛物线的解析式;
(2)利用待定系数法求出直线AB的解析式,用含m的式表示出E,F的坐标,求出EF的长度最大时m的值,即可求得E,F的坐标;
(3)分两种情况:∠E-90°和∠F=90°,分别得到点P的纵坐标,将纵坐标代入抛物线解析式,即可求得点P的值.
解:(1)∵OA=1,OC=4,AC=BC,
∴BC=5,
∴A(﹣1,0),B(4,5),
抛物线y=x2+bx+c经过A,B两点,
∴,解得:,
∴y=x2﹣2x﹣3;
(2)设直线AB解析式为:y=kx+b,
直线经过点A,B两点,
∴,解得:,
∴直线AB的解析式为:y=x+1,
设点E的坐标为(m,m+1),则点F(m,m2﹣2m﹣3),
∴EF=m+1﹣m2+2m+3=﹣m2+3m+4=﹣(m﹣)2+,
∴当EF最大时,m=,
∴点E(,),F(,);
(3)存在.
①当∠FEP=90°时,点P的纵坐标为,
即x2﹣2x﹣3=,解得:x1=,x2=,
∴点P1(,),P2(,),
②当∠EFP=90°时,点P的纵坐标为,
即x2﹣2x﹣3=,解得:x1=,x2=(舍去),
∴点P3(,),
综上所述,P1(,),P2(,),P3(,).
科目:初中数学 来源: 题型:
【题目】如图⊙O是△ABC的外接圆,∠ABC=45°,延长BC于D,连接AD,使得AD∥OC,AB交OC于E.
(1)求证:AD与⊙O相切;
(2)若AE=2,CE=2.求⊙O的半径和AB的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将二次函数y= (x-2)2+1的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1,m),B(4,n)平移后对应点分别是A′、B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,...,则正方形铁片连续旋转2019次后,点P的坐标为________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,过点作,垂足为点,过点分别作,,垂足分别为.连接交线段于点.
(1)在图一中,,,有几组相似的三角形,请写出来;
(2)在图二中,证明:;
(3)如果,,试求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于点G,BG=4,则△EFC的周长为( )
A. 11 B. 10 C. 9 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次活动共调查了 人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为 ;
(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“ ”;
(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,动点P从点A开始沿边AB向B以的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以的速度移动(不与点C重合),如果P、Q分别从A、B同时出发,设运动的时间为,四边形APQC的面积为.
(1)求y与x之间的函数关系式;写出自变量x的取值范围;
(2)当四边形APQC的面积等于时,求x的值;
(3)四边形APQC的面积能否等于?若能,求出运动的时间,若不能,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com