精英家教网 > 初中数学 > 题目详情
已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:
①双曲线的解析式为y=
20
x
(x>0);
②E点的坐标是(4,8);
③sin∠COA=
4
5

④AC+OB=12
5
,其中正确的结论有(  )
A.1个B.2个C.3个D.4个

过点C作CF⊥x轴于点F,
∵OB•AC=160,A点的坐标为(10,0),
∴OA•CF=
1
2
OB•AC=
1
2
×160=80,菱形OABC的边长为10,
∴CF=
80
OA
=
80
10
=8,
在Rt△OCF中,
∵OC=10,CF=8,
∴OF=
OC2-CF2
=
102-82
=6,
∴C(6,8),
∵点D时线段AC的中点,
∴D点坐标为(
10+6
2
8
2
),即(8,4),
∵双曲线y=
k
x
(x>0)经过D点,
∴4=
k
8
,即k=32,
∴双曲线的解析式为:y=
32
x
(x>0),故①错误;
∵CF=8,
∴直线CB的解析式为y=8,
y=
32
x
y=8
,解得
x=4
y=8

∴E点坐标为(4,8),故②正确;
∵CF=8,OC=10,
∴sin∠COA=
CF
OC
=
8
10
=
4
5
,故③正确;
∵A(10,0),C(6,8),
∴AC=
(10-6)2+(0-8)2
=4
5

∵OB•AC=160,
∴OB=
160
AC
=
160
4
5
=8
5

∴AC+OB=4
5
+8
5
=12
5
,故④正确.
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知圆柱的侧面积是6πcm2,若圆柱的底面半径为x(cm),高为ycm).
(1)写出y关于x的函数解析式;
(2)完成下列表格:

(3)在所给的平面直角坐标系中画出y关于x的函数图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,直线y=-x+4与x轴交于点B,与y轴交于点C,交双曲线y=
k
x
(x<0)
于点N,连ON,且S△OBN=10.

(1)求双曲线的解析式;
(2)如图2,平移直线BC交双曲线于点P,交直线y=-2于点Q,∠FCB=∠QBC,PC=QB求平移后的直线PQ的解析式;
(3)如图3,已知A(2,0)点M为双曲线上一点,CE⊥OM于M,AF⊥OM于F,设梯形CEFA的面积为S,且AF•EF=
2
3
S,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y1=kx+b的图象与反比例函数y2=
m
x
图象相交于A、B两点.
(1)求出这两个函数的解析式;
(2)结合函数的图象回答:当自变量x的取值范围满足什么条件时,y1<y2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,正比例函数的图象与反比例函数的图象都经过点P(2,3),点D是正比例函数图象上的一点,过点D分别作x轴、y轴的垂线,垂足分别为点C和点Q,DC、DQ分别交反比例函数的图象于点F和点A,过点A作x轴的垂线,垂足为B,AB交正比例函数的图象于点E.
(1)当点D的纵坐标为9时,求:点E、F的坐标.
(2)当点D在线段OP的延长线上运动时,试猜想AE与DF的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知A(m+3,2)和B(3,
m
3
)
是同一个反比例函数图象上的两个点.
(1)求m的值;(2)作出这个反比例函数的图象;(3)将A,B两点标在函数图象上.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图在反比例函数y=-
2
x
和y=
3
x
的图象上分别有A、B两点,若ABx轴且OA⊥OB,则
OA
OB
=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y=
2
x
于点D,过D作两坐标轴的垂线DC、DE,连接OD.
(1)求证:AD平分∠CDE;
(2)对任意的实数b(b≠0),求证:AD•BD为定值;
(3)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点P的坐标为(2,
3
2
),过点P作x轴的平行线交y轴于点A,交双曲线y=
k
x
(x>0)于点N;作PM⊥AN交双曲线y=
k
x
(x>0)于点M,连接AM.已知PN=4.
(1)求k的值.(2)求△APM的面积.

查看答案和解析>>

同步练习册答案