精英家教网 > 初中数学 > 题目详情
如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )
A.OCAEB.EC=BCC.∠DAE=∠ABED.AC⊥OE

A、∵点C是
EB
的中点,
∴OC⊥BE,
∵AB为圆O的直径,
∴AE⊥BE,
∴OCAE,本选项正确;
B、∵
BC
=
CE

∴BC=CE,本选项正确;
C、∵AD为圆O的切线,
∴AD⊥OA,
∴∠DAE+∠EAB=90°,
∵∠EBA+∠EAB=90°,
∴∠DAE=∠EBA,本选项正确;
D、AC不一定垂直于OE,本选项错误,
故选D
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,PA是⊙O的切线,A为切点,PBC是过点O的割线.若PA=8cm,PB=4cm,则⊙O的直径为(  )
A.6cmB.8cmC.12cmD.16cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,FB是⊙O的切线交AD的延长线于点F.
(1)用尺规作图找到点E的位置(不写作法,保留作图痕迹)
(2)求证:DE是⊙O的切线;
(3)若DE=
3
,⊙O的半径为2,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,⊙O的割线PB、PD分别交⊙O于A、B、C、D.已知PA=4,PB=10,PD=8,则PC=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.
(1)如图①,若AB=2,∠P=30°,求AP的长(结果保留根号);
(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,⊙O1和⊙O2外切于点P,内公切线PC与外公切线AB(A、B分别是⊙O1和⊙O2上的切点)相交于点C,已知⊙O1和⊙O2的半径分别为3和4,则PC的长等于______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,已知∠ABC=90°,以AB为直径作⊙O交AC于D,E为BC的中点,连接DE,求证:DE为⊙O的切线.

查看答案和解析>>

同步练习册答案