精英家教网 > 初中数学 > 题目详情
7.如图:将一张长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,ED′的延长线与BC交于点G.若∠BFC′=70°,则∠1=(  )
A.100°B.110°C.120°D.125°

分析 C′D′交BC于P,如图,先根据折叠的性质得∠ED′C′=∠D=90°,∠C′=∠C=90°,再利用互余得到∠FPC′=20°,则∠GPD′=20°,然后根据三角形外角性质计算∠1的度数.

解答 解:C′D′交BC于P,如图,
∵四边形ABCD为矩形,
∴∠D=∠C=90°,
∵长方形ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,
∴∠ED′C′=∠D=90°,∠C′=∠C=90°,
∵∠BFC′=70°,
∴∠FPC′=20°,
∴∠GPD′=20°,
∴∠1=∠GD′P+∠GPD′=90°+20°=110°.
故选B.

点评 本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了折叠的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系xOy中,直线y=-$\frac{1}{3}$+b与x轴交于点A,与双曲线y=-$\frac{6}{x}$在第二象限内交于点B(-3,a).
(1)求a和b的值;
(2)过点B作直线l平行x轴交y轴于点C,若点P是x轴上的一点,当△BPC周长最小时,求点P的坐标;
(3)若点D在第二象限双曲线上运动,满足S△ABD=S△ABO,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.一次函数y=kx+b的图象经过点($\frac{5}{2}$,0),且与坐标轴所围成的三角形的面积为$\frac{25}{4}$,求这个函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知,在矩形ABCD中,AB=4,BC=8,菱形PQRS的四个顶点在矩形边上.
(1)求证:△ASP≌CQR;
(2)设AS=x,AP=y,求y关于x的函数关系式及定义域;
(3)当x取最小值时,求S菱形PQRS

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.不等式3≤5-3x<9的整数解是-1,0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.分解因式:2x2+5x-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.大家知道,因式分解是数学中的一种重要的恒等变形,运用因式分解的思想方法有时能取得意想不到的效果,如化简:$\frac{1}{\sqrt{2}+1}$=$\frac{2-1}{\sqrt{2}+1}$=$\frac{(\sqrt{2})^{2}-1}{\sqrt{2}+1}$=$\frac{(\sqrt{2}+1)(\sqrt{2}-1)}{\sqrt{2}+1}$=$\sqrt{2}$-1;
$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{3-2}{\sqrt{3}+\sqrt{2}}$=$\frac{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}{\sqrt{3}+\sqrt{2}}$=$\sqrt{3}$-$\sqrt{2}$.
(1)化简:$\frac{1}{\sqrt{4}+\sqrt{3}}$;
(2)从以上化简结构中找出规律,写出用n(n≥1,且n为你整数)表示上面规律的式子;
(3)根据以上规律计算:($\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{4}+\sqrt{3}}$+…+$\frac{1}{\sqrt{2014}+\sqrt{2013}}$)($\sqrt{2014}$+1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在正方形ABCD外侧,以CD为一边作等边三角形CDE,连接AE,BE
(1)求证:AE=BE;
(2)已知BE=10,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,菱形ABCD中,AB=a,∠ABC=60°,点E、F分别在CB、DC的延长线上,∠EAF=60°.
(1)求证:∠E=∠F;
(2)求CE-CF的值.

查看答案和解析>>

同步练习册答案