精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,点DBC 上,点E AC 上,ADBEF. 已知EG∥ADBCG, EH⊥BEBCH∠HEG = 50°.

1)求∠BFD的度数.

2)若∠BAD = ∠EBC∠C = 41°,求∠BAC的度数.

【答案】(1)∠BFD=40°(2)∠BAC=99°

【解析】(1)根据垂直的定义可得∠BEH=90°,然后求出∠BEG=40°,再根据两直线平行线,同位角相等可得∠BFD=∠BEG;

(2)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BFD=∠EBC+∠ABE=∠ABC,然后根据三角形的内角和定理列式计算即可得解.

试题解析:(1)∵EH⊥BE,

∴∠BEH=90°,

∵∠HEG=50°,

∴∠BEG=40°,

又∵EG∥AD,

∴∠BFD=∠BEG=40°;

(2)∵∠BFD=∠BAD+∠ABE,∠BAD=∠EBC,

∴∠BFD=∠EBC+∠ABE=∠ABC=40°,

∵∠C=41°,

∴∠BAC=180°-∠ABC-∠C=180°-40°-41°=99°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数 位于第一象限的图象上,则k的值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】y轴右侧且平行于y轴的直线l被反比例函数)与函数)所截,当直线l向右平移4个单位时,直线l被两函数图象所截得的线段扫过的面积为__________平方单位.

【答案】8

【解析】y轴右侧且平行于y轴的直线l被反比例函数y=x0)与函数y=+2x0)所截,∴设它们的交点为ACAC=2,∵直线l向右平移4个单位,∴CD=4,∴直线l被两函数图象所截得的线段扫过的面积为 2×4=8平方单位.故答案为8.

型】填空
束】
14

【题目】函数的图象如右图所示,则结论:

两函数图象的交点的坐标为时,

时, 逐渐增大时, 随着的增大而增大, 随着的增大而减小.

其中正确结论的序号是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有下列说法:①若DE∥AB,则∠DEF+∠EFB=180;

②能与∠DEF构成内错角的角的个数有2个;③能与∠BFE构

成同位角的角的个数有2个;④能与∠C构成同旁内角的角的个数有4个.其中结论正确的是( )

A. ①② B. ③④ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图17-Z-12所示等腰三角形ABC的底边长为8 cm,腰长为5 cm,一动点P在底边上从点B向点C0.25 cm/s的速度移动请你探究:当点P运动几秒时P与顶点A的连线AP与腰垂直?

17-Z-12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如下图所示,利用关于原点对称的点的坐标的特点,作出与四边形ABCD关于原点对称的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,AD∥BC,∠C=90°,AD=5,BC=9,以A为中心将腰AB顺时针旋转90°至AE,连接DE,则△ADE的面积等于(  )

A.10
B.11
C.12
D.13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察图,由点A和点B可确定   条直线;

观察图,由不在同一直线上的三点A、BC最多能确定   条直线;

(1)动手画一画图中经过A、B、C、D四点的所有直线,最多共可作   条直线;

(2)在同一平面内任三点不在同一直线的五个点最多能确定   条直线、n个点(n≥2)最多能确定   条直线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,线段AB和射线BM交于点B

1)利用尺规完成以下作图,并保留作图痕迹(不写作法)

①在射线BM上作一点C,使AC=AB

②作∠ABM 的角平分线交ACD点;

③在射线CM上作一点E,使CE=CD,连接DE.

2)在(1)所作的图形中,猜想线段BDDE的数量关系,并证明之.

查看答案和解析>>

同步练习册答案