精英家教网 > 初中数学 > 题目详情

【题目】如图抛物线y=x2+bx-c经过直线y=x-3与坐标轴的两个交点AB,与x轴交于另一点C,抛物线的顶点为D

1)求此抛物线的解析式;

2)求SACD的面积.

【答案】(1) y=x2-2x-3;(2)SACD的面积为8.

【解析】

1)根据一次函数的解析式求出AB点坐标,再代入抛物线解析式即可;

2)求出C点坐标,确定AC长,再根据抛物线解析式求出顶点D坐标,则面积可求.

解:(1)当x=0时,y=x-3=-3

B0-3);当y=0时,x=3

A30).

∵抛物线y=x2+bx-c经过AB两点,

,解得b=-2

所以抛物线的解析式为y=x2-2x-3

2)根据0=x2-2x-3,解得x=-13

C-10).

AC=4

抛物线的顶点坐标为(1-4),所以SACD的面积为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将边长为3的正方形纸片ABCD对折,使ABDC重合,折痕为EF,展平后,再将点B折到边CD上,使边AB经过点E,折痕为GH,点B的对应点为M,点A的对应点为N,那么折痕GH的长为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,点E、A、C在同一条直线上,AB∥CD,AB=CE,∠B=∠E.

(1)求证:△ABC≌△CED;

(2)若∠B=25°,∠ACB=45°,求∠ADE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+4x.

(1)写出二次函数y=﹣x2+4x图象的对称轴;

(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线);

(3)根据图象,写出当y0时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为α

1)如图,∠BAC=90°α=45°,试求点D到边ABAC的距离的比值;

2)如图,∠BAC=100°α=20°,连接ADBD,求∠CBD的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的图象与x轴交A-30),B10)两点,与y轴交于点C03),点D为抛物线的顶点.

1)求抛物线的解析式;

2)设点T在第二象限的抛物线上,若其关于原点的对称点也在抛物线上,求点T的坐标;

3)点M为线段AB上一点(点M不与点AB重合),过Mx轴的垂线,与直线AC交于点E,与抛物线交于点P,过PPQAB交抛物线于点Q,过QQNx轴于N,当矩形PMNQ的周长最大时,求△AEM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(11),弧AA1是以点B为圆心,BA为半径的圆弧;弧A1A2是以点O为圆心,OA2为半径的圆弧;弧A2A3是以点C为圆心,CA2为半径的圆弧;弧A3A4是以点A为圆心,AA3为半径的圆弧,继续以点BOCA为圆心,按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,则点A2019的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学初三年级积极推进走班制教学。为了了解一段时间以来,至善班的学习效果,年级组织了多次定时测试,现随机选取甲、乙两个至善班,从中各抽取名同学在某一次定时测试中的数学成绩,其结果记录如下:

收集数据:

至善班甲班的名同学的数学成绩统计(满分为分) (单位:分)

至善班=乙班的名同学的数学成绩统计(满分为分) (单位:分)

整理数据:(成绩得分用表示)

分析数据,并回答下列问题:

完成下表:

至善班甲班的扇形图中,成绩在的扇形中,说对的圆心角的度数为 .估计全部至善班人中优秀人数为 .分及以上为优秀).

根据以上数据,你认为至善班 班(填)所选取做样本的同学的学习效果更好一些,你所做判断的理由是:

.

.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,A(05),直线x=-5x轴交于点D,直线y=-xx轴及直线x=-5分别交于点CE.BE关于x轴对称,连接AB.

(1)求点CE的坐标及直线AB的解析式;

(2)SSCDES四边形ABDO,求S的值;

(3)在求(2)S时,嘉琪有个想法:CDE沿x轴翻折到CDB的位置,而CDB与四边形ABDO拼接后可看成AOC,这样求S便转化为直接求AOC的面积,如此不更快捷吗?但大家经反复验算,发现SAOCS,请通过计算解释他的想法错在哪里.

查看答案和解析>>

同步练习册答案