精英家教网 > 初中数学 > 题目详情
在反比例函数中,当x>0时,y随x的增大而增大,则二次函数y=m x2+m x的图象大致是下图中的
A.B.C.D.
A

试题分析:∵反比例函数中,当x>0时,y随x的增大而增大,∴m<0。
∴二次函数y=m x2+m x的图象开口向下。
又∵二次函数y=m x2+m x的图象的对称轴x=
∴符合上述条件的是选项A。故选A。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0)。

(1)求点B的坐标;
(2)已知,C为抛物线与y轴的交点。
①若点P在抛物线上,且,求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知:如图①,直线与x轴、y轴分别交于A、B两点,两动点D、E分别从A、B两点同时出发向O点运动(运动到O点停止);对称轴过点A且顶点为M的抛物线(a<0)始终经过点E,过E作EG∥OA交抛物线于点G,交AB于点F,连结DE、DF、AG、BG.设D、E的运动速度分别是1个单位长度/秒和个单位长度/秒,运动时间为t秒.

(1)用含t代数式分别表示BF、EF、AF的长;
(2)当t为何值时,四边形ADEF是菱形?判断此时△AFG与△AGB是否相似,并说明理由;
(3)当△ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c交y轴于点C(0,4),对称轴x=2与x轴交于点D,顶点为M,且DM=OC+OD.

(1)求该抛物线的解析式;
(2)设点P(x,y)是第一象限内该抛物线上的一个动点,△PCD的面积为S,求S关于x的函数关系式,并写出自变量x的取值范围;
(3)在(2)的条件下,若经过点P的直线PE与y轴交于点E,是否存在以O、P、E为顶点的三角形与△OPD全等?若存在,请求出直线PE的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线经过点A(,0)和点B(1,),与x轴的另一个交点为C.
(1)求抛物线的函数表达式;
(2)点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,求点D的坐标;
(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE.
①判断四边形OAEB的形状,并说明理由;
②点F是OB的中点,点M是直线BD的一个动点,且点M与点B不重合,当∠BMF=∠MFO时,请直接写出线段BM的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线经过点A(3,0),B(﹣1,0).
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(2013年四川绵阳4分)二次函数y=ax2+bx+c的图象如图所示,给出下列结论:
①2a+b>0;②b>a>c;③若﹣1<m<n<1,则m+n<;④3|a|+|c|<2|b|.
其中正确的结论是   (写出你认为正确的所有结论序号).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列选项正确的是
A.a>0B.c>0C.ac>0D.bc<0

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是
A.图象关于直线x=1对称
B.函数ax2+bx+c(a≠0)的最小值是﹣4
C.﹣1和3是方程ax2+bx+c(a≠0)的两个根
D.当x<1时,y随x的增大而增大

查看答案和解析>>

同步练习册答案