ÎÒ¹úÖøÃûÊýѧ¼Ò»ªÂÞ¸ýÔø˵¹ý£º¡°ÊýȱÐÎʱÉÙÖ±¹Û£¬ÐÎÉÙÊýʱÄÑÈë΢£»ÊýÐνáºÏ°Ù°ãºÃ£¬¸ôÀë·Ö¼ÒÍòÊÂÐÝ¡±£®ÊýѧÖУ¬ÊýºÍÐÎÊÇÁ½¸ö×îÖ÷ÒªµÄÑо¿¶ÔÏó£¬ËüÃÇÖ®¼äÓÐ×ÅÊ®·ÖÃÜÇеÄÁªÏµ£¬ÔÚÒ»¶¨Ìõ¼þÏ£¬ÊýºÍÐÎÖ®¼ä¿ÉÒÔÏ໥ת»¯£¬Ï໥Éø͸£®
ÊýÐνáºÏµÄ»ù±¾Ë¼Ï룬¾ÍÊÇÔÚÑо¿ÎÊÌâµÄ¹ý³ÌÖУ¬×¢Òâ°ÑÊýºÍÐνáºÏÆðÀ´¿¼²ì£¬Õå×ÃÎÊÌâµÄ¾ßÌåÇéÐΣ¬°ÑͼÐÎÐÔÖʵÄÎÊÌâת»¯ÎªÊýÁ¿¹ØϵµÄÎÊÌ⣬»òÕß°ÑÊýÁ¿¹ØϵµÄÎÊÌâת»¯ÎªÍ¼ÐÎÐÔÖʵÄÎÊÌ⣬ʹ¸´ÔÓÎÊÌâ¼òµ¥»¯£¬³éÏóÎÊÌâ¾ßÌ廯£¬»¯ÄÑΪÒ×£¬»ñµÃ¼ò±ãÒ×Ðеijɹ¦·½°¸£®
ÀýÈ磺Çó1+2+3+4+¡­+nµÄÖµ£¬ÆäÖÐnÊÇÕýÕûÊý£®
¶ÔÓÚÕâ¸öÇóºÍÎÊÌ⣬Èç¹û²ÉÓô¿´úÊýµÄ·½·¨£¨Ê×βÁ½Í·¼Ó£©£¬ÎÊÌâËäÈ»¿ÉÒÔ½â¾ö£¬µ«ÔÚÇóºÍ¹ý³ÌÖУ¬Ðè¶ÔnµÄÆæżÐÔ½øÐÐÌÖÂÛ£®
Èç¹û²ÉÓÃÊýÐνáºÏµÄ·½·¨£¬¼´ÓÃͼÐεÄÐÔÖÊÀ´ËµÃ÷ÊýÁ¿¹ØϵµÄÊÂʵ£¬ÄǾͷdz£µÄÖ±¹Û£®ÏÖÀûÓÃͼÐεÄÐÔÖÊÀ´Çó1+2+3+4+¡­+nµÄÖµ£¬·½°¸ÈçÏ£ºÈçͼ£¬Ð±Ïß×ó±ßµÄÈý½ÇÐÎͼ°¸ÊÇÓÉÉϵ½ÏÂÿ²ãÒÀ´Î·Ö±ðΪ1£¬2£¬3£¬¡­£¬n¸öСԲȦÅÅÁÐ×é³ÉµÄ£®¶ø×é³ÉÕû¸öÈý½ÇÐÎСԲȦµÄ¸öÊýǡΪËùÇóʽ×Ó1+2+3+4+¡­+nµÄÖµ£®ÎªÇóʽ×ÓµÄÖµ£¬ÏÖ°Ñ×ó±ßÈý½ÇÐε¹·ÅÓÚбÏßÓұߣ¬ÓëÔ­Èý½ÇÐÎ×é³ÉÒ»¸öƽÐÐËıßÐΣ®´Ëʱ£¬×é³ÉƽÐÐËıßÐεÄСԲȦ¹²ÓÐnÐУ¬Ã¿ÐÐÓУ¨n+1£©¸öСԲȦ£¬ËùÒÔ×é³ÉƽÐÐËıßÐÎСԲȦµÄ×ܸöÊýΪn£¨n+1£©¸ö£¬Òò´Ë£¬×é³ÉÒ»¸öÈý½ÇÐÎСԲȦµÄ¸öÊýΪÊýѧ¹«Ê½£¬¼´1+2+3+4+¡­+n=Êýѧ¹«Ê½£®
£¨1£©·ÂÕÕÉÏÊöÊýÐνáºÏµÄ˼Ïë·½·¨£¬Éè¼ÆÏà¹ØͼÐΣ¬Çó1+3+5+7+¡­+£¨2n-1£©µÄÖµ£¬ÆäÖÐnÊÇÕýÕûÊý£®£¨ÒªÇ󣺻­³öͼÐΣ¬²¢ÀûÓÃͼÐÎ×ö±ØÒªµÄÍÆÀí˵Ã÷£©
£¨2£©ÊÔÉè¼ÆÁíÍâÒ»ÖÖͼÐΣ¬Çó1+3+5+7+¡­+£¨2n-1£©µÄÖµ£¬ÆäÖÐnÊÇÕýÕûÊý£®£¨ÒªÇ󣺻­³öͼÐΣ¬²¢ÀûÓÃͼÐÎ×ö±ØÒªµÄÍÆÀí˵Ã÷£©

½â£º£¨1£©ÒòΪ×é³É´ËƽÐÐËıßÐεÄСԲȦ¹²ÓÐnÐУ¬Ã¿ÐÐÓÐ[£¨2n-1£©+1]¸ö£¬¼´2n¸ö£¬ËùÒÔ×é³É´ËƽÐÐËıßÐεÄСԲȦ¹²ÓУ¨n¡Á2n£©¸ö£¬¼´2n2¸ö£®
¡à1+3+5+7+¡­+£¨2n-1£©==n2£®


£¨2£©ÒòΪ×é³É´ËÕý·½ÐεÄСԲȦ¹²ÓÐnÐУ¬Ã¿ÐÐÓÐn¸ö£¬ËùÒÔ¹²ÓУ¨n¡Án£©¸ö£¬¼´n2¸ö£®
¡à1+3+5+7+¡­+£¨2n-1£©=n¡Án=n2£®

·ÖÎö£º£¨1£©¸ù¾ÝÌâÄ¿ÖÐÌṩµÄ»ù±¾Ë¼Ï룬¿ÉÒÔÉè¼Æ³öÀàËƵÄͼÐΣ¬Ôò¹²ÓÐnÐУ¬Ã¿ÐÐÊÇ2n¸ö£¬´Ó¶ø½øÐмÆË㣻
£¨2£©Ò²¿ÉÒÔÉè¼Æ×é³ÉÕý·½ÐεÄͼÐΣ¬¸ù¾ÝÕý·½ÐεÄÿÐÐÓÐn¸ö£¬ÔònÐй²ÓÐn2¸ö£®
µãÆÀ£º¿¼²éÁËѧÉúµÄÊýÐνáºÏ˼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÌ⣺ÎÒ¹úÖøÃûÊýѧ¼Ò»ªÂÞ¸ý˵¹ý£º¡°ÊýȱÐÎʱÉÙÖ±¹Û£¬ÐÎСÊýʱÄÑÈë΢£¬ÊýÐνáºÏ°Ù°ãºÃ£¬¸ôÀë·Ö¼ÒÊÂÍòÐÝ£®¡±ÊýÐνáºÏµÄ»ù±¾Ë¼Ï룬¾ÍÊÇÔÚÑо¿ÎÊÌâµÄ¹ý³ÌÖУ¬×¢Òâ°ÑÊýºÍÐνáºÏÆðÀ´¿¼²ì£¬Õå×ÃÎÊÌâµÄ¾ßÌåÇéÐΣ¬°ÑͼÐÎÐÔÖʵÄÎÊÌâת»¯ÎªÊýÁ¿¹ØϵµÄÎÊÌâת»¯ÎªÍ¼ÐÎÐÔÖʵÄÎÊÌ⣬ʹ¸´ÔÓÎÊÌâ¼òµ¥»¯£¬³éÏóÎÊÌâ¾ßÌ廯£¬»¯ÄÑΪÒ×£¬»ñµÃ¼ò±ãÒ×Ðеijɹ¦·½°¸£®
Àý£ºÇó1+2+3+4+¡­+nµÄÖµ£¬ÆäÖÐnÊÇÕýÕûÊý£»
Èç¹û²ÉÓÃÊýÐνáºÏµÄ·½·¨£¬ÏÖÀûÓÃͼÐεÄÐÔÖÊÀ´Çó1+2+3+4+¡­+nµÄÖµ£¬·½°¸ÈçÏ£º
Èçͼ£¬Ð±Ïß×ó±ßµÄÈý½ÇÐÎͼ°¸ÊÇÓÉÉϵ½ÏÂÿ²ãÒÀ´Î·Ö±ðΪ1£¬2£¬3¡­n¸öСԲȦµÄ¸öÊýÇ¡ºÃΪËùÇóʽ×Ó1+2+3+4+¡­+nµÄÖµ£¬ÎªÇóʽ×ÓµÄÖµ£¬ÏÖ°Ñ×ó±ßÈý½ÇÐε¹·ÅÓÚбÏßÓұߣ¬ÓëÔ­Èý½ÇÐÎ×é³ÉÒ»¸öƽÐÐËıßÐÎСԲȦµÄ×ܸöÊýΪn£¨n+1£©¸ö£¬Òò´Ë£¬×é³ÉÒ»¸öÈý½ÇÐÎСԲȦµÄ¸öÊýΪ
n(n+1)
2
£¬¼´1+2+3+4+¡­+n=
n(n+1)
2

¢Ù·ÂÕÕÉÏÊöÊýÐνáºÏµÄ˼Ïë·½·¨£¬Éè¼ÆÏà¹ØͼÐΣ¬Çó1+3+5+7+¡­+£¨2n-1£©µÄÖµ£¬ÆäÖÐnΪÕýÕûÊý£¨ÒªÇó»­³öͼÐΣ¬Ð´³ö½á¹û¼´¿É£©
¢ÚÊÔÉè¼ÆÁíÍâÒ»ÖÖͼÐΣ¬Çó1+3+5+7+¡­+£¨2n-1£©µÄÖµ£¬ÆäÖÐnÊÇÕýÕûÊý£¨ÒªÇó»­³öͼÐΣ¬Ð´³ö½á¹û¼´¿É£©
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÎÒ¹úÖøÃûÊýѧ¼Ò»ªÂÞ¸ýÔø˵¹ý£º¡°ÊýȱÐÎʱÉÙÖ±¹Û£¬ÐÎÉÙÊýʱÄÑÈë΢£»ÊýÐνáºÏ°Ù°ãºÃ£¬¸ôÀë·Ö¼ÒÍòÊÂÐÝ¡±£®ÊýѧÖУ¬ÊýºÍÐÎÊÇÁ½¸ö×îÖ÷ÒªµÄÑо¿¶ÔÏó£¬ËüÃÇÖ®¼äÓÐ×ÅÊ®·ÖÃÜÇеÄÁªÏµ£¬ÔÚÒ»¶¨Ìõ¼þÏ£¬ÊýºÍÐÎÖ®¼ä¿ÉÒÔÏ໥ת»¯£¬Ï໥Éø͸£®
ÊýÐνáºÏµÄ»ù±¾Ë¼Ï룬¾ÍÊÇÔÚÑо¿ÎÊÌâµÄ¹ý³ÌÖУ¬×¢Òâ°ÑÊýºÍÐνáºÏÆðÀ´¿¼²ì£¬Õå×ÃÎÊÌâµÄ¾ßÌåÇéÐΣ¬°ÑͼÐÎÐÔÖʵÄÎÊÌâת»¯ÎªÊýÁ¿¹ØϵµÄÎÊÌ⣬»òÕß°ÑÊýÁ¿¹ØϵµÄÎÊÌâת»¯ÎªÍ¼ÐÎÐÔÖʵÄÎÊÌ⣬ʹ¸´ÔÓÎÊÌâ¼òµ¥»¯£¬³éÏóÎÊÌâ¾ßÌ廯£¬»¯ÄÑΪÒ×£¬»ñµÃ¼ò±ãÒ×Ðеijɹ¦·½°¸£®
ÀýÈ磺Çó1+2+3+4+¡­+nµÄÖµ£¬ÆäÖÐnÊÇÕýÕûÊý£®
¶ÔÓÚÕâ¸öÇóºÍÎÊÌ⣬Èç¹û²ÉÓô¿´úÊýµÄ·½·¨£¨Ê×βÁ½Í·¼Ó£©£¬ÎÊÌâËäÈ»¿ÉÒÔ½â¾ö£¬µ«ÔÚÇóºÍ¹ý³ÌÖУ¬Ðè¶ÔnµÄÆæżÐÔ½øÐÐÌÖÂÛ£®
Èç¹û²ÉÓÃÊýÐνáºÏµÄ·½·¨£¬¼´ÓÃͼÐεÄÐÔÖÊÀ´ËµÃ÷ÊýÁ¿¹ØϵµÄÊÂʵ£¬ÄǾͷdz£µÄÖ±¹Û£®ÏÖÀûÓÃͼÐεÄÐÔÖÊÀ´Çó1+2+3+4+¡­+nµÄÖµ£¬·½°¸ÈçÏ£ºÈçͼ£¬Ð±Ïß×ó±ßµÄÈý½ÇÐÎͼ°¸ÊÇÓÉÉϵ½ÏÂÿ²ãÒÀ´Î·Ö±ðΪ1£¬2£¬3£¬¡­£¬n¸öСԲȦÅÅÁÐ×é³ÉµÄ£®¶ø×é³ÉÕû¸öÈý½ÇÐÎСԲȦµÄ¸öÊýǡΪËùÇóʽ×Ó1+2+3+4+¡­+nµÄÖµ£®ÎªÇóʽ×ÓµÄÖµ£¬ÏÖ°Ñ×ó±ßÈý½ÇÐε¹·ÅÓÚбÏßÓұߣ¬ÓëÔ­Èý½ÇÐÎ×é³ÉÒ»¸öƽÐÐËıßÐΣ®´Ëʱ£¬×é³ÉƽÐÐËıßÐεÄСԲȦ¹²ÓÐnÐУ¬Ã¿ÐÐÓУ¨n+1£©¸öСԲȦ£¬ËùÒÔ×é³ÉƽÐÐËıßÐÎСԲȦµÄ×ܸöÊýΪn£¨n+1£©¸ö£¬Òò´Ë£¬×é³ÉÒ»¸öÈý½ÇÐÎСԲȦµÄ¸öÊýΪ
n(n+1)
2
£¬¼´1+2+3+4+¡­+n=
n(n+1)
2
£®
£¨1£©·ÂÕÕÉÏÊöÊýÐνáºÏµÄ˼Ïë·½·¨£¬Éè¼ÆÏà¹ØͼÐΣ¬Çó1+3+5+7+¡­+£¨2n-1£©µÄÖµ£¬ÆäÖÐnÊÇÕýÕûÊý£®£¨ÒªÇ󣺻­³öͼÐΣ¬²¢ÀûÓÃͼÐÎ×ö±ØÒªµÄÍÆÀí˵Ã÷£©
£¨2£©ÊÔÉè¼ÆÁíÍâÒ»ÖÖͼÐΣ¬Çó1+3+5+7+¡­+£¨2n-1£©µÄÖµ£¬ÆäÖÐnÊÇÕýÕûÊý£®£¨ÒªÇ󣺻­³öͼÐΣ¬¾«Ó¢¼Ò½ÌÍø²¢ÀûÓÃͼÐÎ×ö±ØÒªµÄÍÆÀí˵Ã÷£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÎÒ¹úÖøÃûÊýѧ¼Ò»ªÂÞ¸ýÔø¾­Ëµ¹ýÕâÑùÒ»¾ä»°£º¡°ÊýÐνáºÏ°Ù°ãºÃ£¬¸ôÁÑ·Ö¼ÒÍòÊÂÐÝ¡±£®
ÈçÏÂͼ£¬ÔÚÒ»¸ö±ß³¤Îª1µÄÕý·½ÐÎÖ½°åÉÏ£¬ÒÀ´ÎÌùÉÏÃæ»ýΪ
1
2
£¬
1
4
£¬
1
8
£¬
1
16
£¬¡­£¬
1
210
µÄС³¤·½ÐÎֽƬ£¬ÇëÄãд¾«Ó¢¼Ò½ÌÍø³ö×îºóÓàÏÂδÌù²¿·ÖµÄÃæ»ýµÄ±í´ïʽ£º
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÎÒ¹úÖøÃûÊýѧ¼Ò»ªÂÞ¸ýÔø˵¹ý£º¡°ÊýÐνáºÏ°Ù°ãºÃ£¬¸ôÁÑ·Ö¼ÒÍòÊ·ǣ®¡±Èçͼ£¬ÔÚÒ»¸ö±ß³¤Îª1µÄÕý·½ÐÎÖ½°æÉÏ£¬ÒÀ´ÎÌùÉÏÃæ»ýΪ
1
2
£¬
1
4
£¬
1
8
¡­
1
2n
£¬µÄ¾ØÐβÊɫֽƬ£¨nΪ´óÓÚ1µÄÕûÊý£©£®
ÇëÄãÓá°ÊýÐνáºÏ¡±µÄ˼Ï룬ÒÀÊýÐα仯µÄ¹æÂÉ£¬¼ÆËã
1
2
+
1
4
+
1
8
+¡­+
1
2n
=
1-
1
2n
1-
1
2n
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

һλÀÏÈ˷dz£Ï²»¶º¢×Ó£¬Ã¿µ±Óк¢×Óµ½Ëû¼Ò×ö¿Íʱ£¬ÀÏÈ˶¼ÒªÄóöÌǹûÕдýËûÃÇ£®À´Ò»¸öº¢×Ó£¬ÀÏÈ˾͸øº¢×ÓÒ»¿éÌÇ£»À´Á½¸öº¢×Ó£¬ÀÏÈ˾͸øÿ¸öº¢×ÓÁ½¿éÌÇ¡­
£¨1£©µÚÒ»ÌìÓÐa¸öÄк¢È¥ÁËÀÏÈ˼ң¬ÀÏÈËÒ»¹²¸øÁËÕâЩº¢×Óa2¿éÌÇ£»
£¨2£©µÚ¶þÌìÓÐb¸öÅ®º¢È¥ÁËÀÏÈ˼ң¬ÀÏÈËÒ»¹²¸øÁËÕâЩº¢×Ób2¿éÌÇ£»
£¨3£©µÚÈýÌìÕ⣨a+b£©¸öº¢×ÓÒ»ÆðÈ¥ÁËÀÏÈ˼ң¬ÀÏÈËÒ»¹²¸øÁËÕâЩº¢×Ó£¨a+b£©2¿éÌÇ£®
ÕâЩº¢×ÓµÚÈýÌìµÃµ½µÄÌǹûÊýÓëÇ°Á½ÌìËûÃǵõ½µÄÌǹû×ÜÊýÏà±ÈÄĸö¶à£¬ÄĸöÉÙ£¿ÎªÊ²Ã´£¿¾­¹ý˼¿¼¿ÉÖª£¬a¸öÄк¢Ã¿È˶àµÃÁËb¿éÌÇ£¬b¸öÅ®º¢Ã¿È˶àµÃÁËa¿éÌÇ£¬Òò´Ë¶àµÃÁËab+ab=2ab¿éÌÇ£¬¼´ÓУ¨a+b£©2=a2+b2+2ab£®
ÎÒ¹úÖøÃûÊýѧ¼Ò»ªÂÞ¸ýÔø˵¹ý£º¡°ÊýȱÐÎʱÉÙÖ±¹Û£¬ÐÎÉÙÊýʱÄÑÈë΢£»ÊýÐνáºÏ°Ù°ãºÃ£¬¸ôÀë·Ö¼ÒÍòÊÂÐÝ¡±£®ÔÚÒ»¶¨Ìõ¼þÏ£¬ÊýºÍÐÎÖ®¼ä¿ÉÒÔÏ໥ת»¯£¬Ï໥Éø͸£®
Ìå»áÊýÐνáºÏ˼ÏëµÄÄÚº­£¬ÊÔÉè¼ÆÒ»ÖÖͼÐÎÀ´ËµÃ÷£¨a+b£©2=a2+b2+2ab£®£¨ÒªÇ󣺻­³öͼÐΣ¬²¢ÀûÓÃͼÐÎ×÷±ØÒªµÄÍÆÀí˵Ã÷£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸