【题目】如图,点A、B、C在半径为2的圆O上,且∠BAC=60°,作OM⊥AB于点M,ON⊥AC于点N,连接MN,则MN的长为( )
A. 1B. C. 2D. 2
【答案】B
【解析】
连接OB并延长交圆O于E,则BE为圆O直径,连接BC、CE,由圆周角定理可得∠BEC=60°,由BE是直径可知∠BCE=90°,利用∠BEC的余弦值可得BC的长,根据垂径定理可得AM=BM,AN=CN,即可证明MN是△ABC的中位线,根据三角形中位线定理即可求出MN的长.
连接OB并延长交圆O于E,则BE为圆O直径,连接BC、CE,
∵∠BAC和∠AEC都是所对圆周角,
∴∠BAC=∠BEC=60°,
∵BE是直径,
∴∠BCE=90°,BE=4,
∴BC=BEsin60°=4×=2,
∵OM⊥AB,ON⊥AC,
∴AM=BM,AN=CN,
∴MN是△ABC的中位线,
∴MN=BC=.
故选B.
科目:初中数学 来源: 题型:
【题目】如图1,正方形ABCD中,AB=4cm,点P从点D出发沿DA向点A匀速运动,速度是1cm/s,同时,点Q从点A出发沿AB方向,向点B匀速运动,速度是2cm/s,连接PQ、CP、CQ,设运动时间为t(s)(0<t<2)
(1)是否存在某一时刻t,使得PQ∥BD?若存在,求出t值;若不存在,说明理由
(2)设△PQC的面积为s(cm2),求s与t之间的函数关系式;
(3)如图2,连接AC,与线段PQ相交于点M,是否存在某一时刻t,使S△QCM:S△PCM=3:5?若存在,求出t值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在口ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.
(1)求证:△ABF≌△EDA;
(2)延长AB与CF相交于G,若AF⊥AE,求证BF⊥BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(6分)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球并记录颜色.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】周末,小凯和同学带着皮尺,去测量杨大爷家露台遮阳蓬的宽度,如图,由于无法直接测量,小凯便在楼前面的地面上选择了一条直线EF,通过在直线EF上选点观测,发现当他位于N点时,他的视线从M点通过露台D点正好落在遮阳蓬A点处:当他位于Q点时,视线从P点通过露台D点正好落在遮阳蓬B点处,这样观测到两个点A,B间的距离即为遮阳蓬的宽.已知AB∥CD∥EF,点C在AG上,AG、DE、PQ、MN均为垂直于EF,MN=PQ,露台的宽CD=GE,测得GE=5米,EN=13.2米,QN=6.2,请你根据以上信息,求出遮阳蓬的宽AB是多少米?(结果精确到0.01米)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠MON=30°,B为OM上一点,BA⊥ON于点A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连接BE,若AB=2,则BE的最小值为( )
A. +1B. 2﹣1C. 3D. 4﹣
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题发现:
()如图①,中,,,,点是边上任意一点,则的最小值为__________.
()如图②,矩形中,,,点、点分别在、上,求的最小值.
()如图③,矩形中,,,点是边上一点,且,点是边上的任意一点,把沿翻折,点的对应点为点,连接、,四边形的面积是否存在最小值,若存在,求这个最小值及此时的长度;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com