精英家教网 > 初中数学 > 题目详情

【题目】如图①,在等腰ABCADE中,AB=AC,AD=AE,且∠BAC=DAE=120°.

(1)求证:ABD≌△ACE;

(2)把ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断PMN的形状,并说明理由;

(3)在(2)中,把ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出PMN周长的最小值与最大值.

【答案】(1)证明见解析;(2)PMN是等边三角形.理由见解析;(3)PMN周长的最小值为3,最大值为15.

【解析】

(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得PM=CE,PM∥CE,PN=BD,PN∥BD,(1)的方法可得BD=CE,即可得PM=PN,所以△PMN是等腰三角形再由PM∥CE,PN∥BD,根据平行线的性质可得∠DPM=∠DCE,∠PNC=∠DBC,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC, 所以∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得∠MPN=60°,所以△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,PM=PN=BD,所以当PM最大时,△PMN周长最大,当点DAB上时,BD最小,PM最小,求得此时BD的长,即可得△PMN周长的最小值;当点DBA延长线上时,BD最大,PM的值最大,此时求得△PMN周长的最大值即可.

(1)因为∠BAC=∠DAE=120°,

所以∠BAD=∠CAE,又AB=AC,AD=AE,

所以△ABD≌△ADE;

(2)△PMN是等边三角形。

理由:P,M分别是CD,DE的中点,

∴PM=CE,PM∥CE,

N,M分别是BC,DE的中点,

∴PN=BD,PN∥BD,

(1)的方法可得BD=CE,

∴PM=PN,

∴△PMN是等腰三角形,

∵PM∥CE,∴∠DPM=∠DCE,

∵PN∥BD,∴∠PNC=∠DBC,

∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,

∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC

=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,

∵∠BAC=120°,∴∠ACB+∠ABC=60°,

∴∠MPN=60°,

∴△PMN是等边三角形。

(3)由(2)知,△PMN是等边三角形,PM=PN=BD,

∴PM最大时,△PMN周长最大,

DAB上时,BD最小,PM最小,

∴BD=AB-AD=2,△PMN周长的最小值为3;

DBA延长线上时,BD最大,PM最大

∴BD=AB+AD=10,△PMN周长的最大值为15。

故答案为:△PMN周长的最小值为3,最大值为15

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,数学家莫伦发现了世界上第一个完美长方形,它恰好能够分割成大小不同的正方形,请你完成下面计算.

1)如果标注12的正方形的边长分别是11.2,那么标注3的正方形的边长为________.标注5的正方形的边长为________

2)如果标注12的正方形的边长分别是,求标注10的正方形的边长是多少?(用含的代数式表示)

3)若在(2)的条件下,“勤奋小组”继续探究发现,标注9的正方形边长有两种表示方法,若标注9的正方形的边长是15,求的值?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l1:y=(k﹣1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.

(1)当k=2时,直线l1、l2x轴围成的三角形的面积S2=______

(2)当k=2、3、4,……,2018时,设直线l1、l2x轴围成的三角形的面积分别为S2,S3,S4,……,S2018,则S2+S3+S4+……+S2018=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点BE分别在ACDF上,AF分别交BDCE于点MN,∠A=∠F,∠1=∠2.

(1)求证:四边形BCED是平行四边形;

(2)已知DE=2,连接BN,若BN平分DBC,求CN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,

1)求点C到直线AB的距离;

2求海警船到达事故船C处所需的大约时间.(温馨提示:sin53°≈0.8cos53°≈0.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的三个方程x2+4mx+4m2+2m+3=0,x2+(2m+1)x+m2=0,(m﹣1)x2+2mx+m﹣1=0中至少有一个方程有实根,则m的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,∠1=2.求证:∠3 +4=180°

证明:∵∠1=2(已知)

ab    

∴∠3 +5=180° (两直线平行,同旁内角互补)

∵∠4=5    

∴∠3 +4=180° (等量代换)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】CD经过∠BCA顶点C的一条直线,CA=CBEF分别是直线CD上两点,且∠BEC=CFA=

1)若直线CD经过∠BCA的内部,且EF在射线CD上,请解决下面两个问题:

①如图1,若∠BCA=90°,=90°,则BE_____CFEF____.(填”““=”

②如图2,若<∠BCA180°,请添加一个关于∠与∠BCA关系的条件__________,使①中的两个结论仍然成立,并证明两个结论成立.

2)如图3,若直线CD经过∠BCA的外部,∠=BCA,请提出EFBEAF三条线段数量关系的合理猜想(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ADBCDC⊥BC AE平分∠BAD, ECD中点,试探索ADBCAB之间有何关系?并说明理由.

查看答案和解析>>

同步练习册答案