如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连结DE.
(1) DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由;
(2) 若AD、AB的长是方程x2-10x+24=0的两个根,求直角边BC的长。
解:(1)DE与半圆O相切.
证明: 连结OD、BD ∵AB是半圆O的直径
∴∠BDA=∠BDC=90° ∵在Rt△BDC中,E是BC边上的中点
∴DE=BE∴∠EBD=∠BDE
∵OB=OD∴∠OBD=∠ODB
又∵∠ABC=∠OBD+∠EBD=90°
∴∠ODB+∠EBD=90°∴DE与半圆O相切.
(2)解:∵在Rt△ABC中,BD⊥AC
∴ Rt△ABD∽Rt△ABC
∴ =
即AB2=AD·AC∴ AC=
∵ AD、AB的长是方程x2-10x+24=0的两个根
∴ 解方程x2-10x+24=0得: x1=4 x2=6
∵ AD<AB ∴ AD=4 AB=6 ∴ AC=9
在Rt△ABC中,AB=6 AC=9
∴ BC==
=3
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
5 |
1 |
2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com