精英家教网 > 初中数学 > 题目详情
如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F.
(1)如图2,当BP=BA时,∠EBF=______°,猜想∠QFC=______°;
(2)如图1,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明;
(3)已知线段AB=2,设BP=x,点Q到射线BC的距离为y,求y关于x的函数关系式.

【答案】分析:(1)∠EBF与∠ABE互余,而∠ABE=60°,即可求得∠EBF的度数;利用观察法,或量角器测量的方法即可求得∠QFC的度数;
(2)根据三角形的外角等于不相邻的两内角的和,证明∠BAP=∠EAQ,进而得到△ABP≌△AEQ,证得∠AEQ=∠ABP=90°,则∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°,∠QFC=∠EBF+∠BEF;
(3)过点F作FG⊥BE于点G,过点Q作QH⊥BC,根据△ABP≌△AEQ得到:设QE=BP=x,则QF=QE+EF=x+2.点Q到射线BC的距离y=QH=sin60°×QF=(x+2),即可求得函数关系式.
解答:证明:(1)∵∠ABC=90°,∠BAE=60°,
∴∠EBF=30°;(1分)
则猜想:∠QFC=60°;(2分)

(2)∠QFC=60°.                      (1分)
∵∠BAP=∠BAE+∠EAP=60°+∠EAP,∠EAQ=∠QAP+∠EAP=60°+∠EAP,
∴∠BAP=∠EAQ
在△ABP和△AEQ中,

∴△ABP≌△AEQ (SAS)
∴∠AEQ=∠ABP=90°
∴∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°,
∴∠QFC=∠EBF+∠BEF=30°+30°=60;

(3)在图1中,过点F作FG⊥BE于点G.
∵△ABE是等边三角形,
∴BE=AB=2
由(1)得∠EBF=30°.
又∵∠QFC=60°
∴∠EBF=∠BEF,
∴BF=EF,
∵FG⊥BE
∴BG==
∴BF==2.
∴EF=2.                                       (1分)
∵在Rt△ABP和Rt△AEQ中,

∴△ABP≌△AEQ.
设QE=BP=x,
则QF=QE+EF=x+2.                               (2分)
过点Q作QH⊥BC,垂足为H.
在Rt△QHF中,y=QH=sin60°×QF=(x+2).(x>0)
即y关于x的函数关系式是:y=x+.            (3分)
点评:本题把图形的旋转,与三角形的全等,三角函数,以及函数相结合,是一个比较难的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.
探究:
(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.
(2)一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连接各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连接它的各边中点所进行的分割,称为2阶分割(如图2)…依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为SN
①若△DEF的面积为10000,当n为何值时,2<Sn<3?(请用计算器进行探索,要求至少写出三次的尝试估算过程)
②当n>1时,请写出一个反映Sn-1,Sn,Sn+1之间关系的等式.(不必证明)精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=
12
BC.根据上面的结论:
(1)你能否说出顺次连接任意四边形各边中点,可得到一个什么特殊四边形并说明理由;
(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•德州)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹);
(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;
(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:
如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)添线补全如图1几何体的三视图.

(2)如图2,已知△ABC.请你确定一点P,使PB=PC,且点P到∠B的两边距离相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的直角三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转.
(1)在图1中,DE交边AB于M,DF交边BC于N
①证明:DM=DN
②在这一旋转过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积
(2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案