精英家教网 > 初中数学 > 题目详情

【题目】在图1﹣﹣图4中,菱形ABCD的边长为3,∠A=60°,点M是AD边上一点,且DM= AD,点N是折线AB﹣BC上的一个动点.

(1)如图1,当N在BC边上,且MN过对角线AC与BD的交点时,则线段AN的长度为
(2)当点N在AB边上时,将△AMN沿MN翻折得到△A′MN,如图2,
①若点A′落在AB边上,则线段AN的长度为
②当点A′落在对角线AC上时,如图3,求证:四边形AM A′N是菱形;
③当点A′落在对角线BD上时,如图4,求 的值.

【答案】
(1)
(2)1,解:②在菱形ABCD中,AC平分∠DAB,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵△AMN沿MN翻折得到△A′MN,∴AC⊥MN,AM=A′M,AN=A′N,;∴∠AMN=∠ANM=60°,∴AM=AN,∴AM=A′M=AN=A′N,∴四边形AM A′N是菱形;,③在菱形ABCD中,AB=AD,∴∠ADB=∠ABD=60°,∴∠BA′M=∠DMA′+∠ADB,∴A′M=AM=2,∠NA′M=∠A=60°,∴∠NA′B=∠DMA′,∴△DMA′∽△BA′N,∴ = ,∵MD= AD=1,A′M=2,∴ =
【解析】解:(1)如图1,

过点N作NG⊥AB于G,

∵四边形ABCD是菱形,

∴AD∥BC,OD=OB,

= =1,

∴BN=DM= AD=1,

∵∠DAB=60°,

∴∠NBG=60°

∴BG= ,GN=

∴AN= = =

故答案为:

( 2 )①当点A′落在AB边上,则MN为AA′的中垂线,

∵∠DAB=60°AM=2,

∴AN= AM=1,

故答案为:1;

(1)过点N作NG⊥AB于G,构造直角三角形,根据菱形的性质得出AD∥BC,OD=OB,∠NBG=60° ,根据平行线分线段成比例定理得出DM∶BN=OD∶OB=1,从而得出BN=DM=1 ,利用含30°的直角三角形的边的关系得出BG、GN的长,利用勾股定理解决问题;
(2)①利用线段中垂线的性质得到MN⊥AA',利用含30°的直角三角形的边的关系得出AN的长;
②利用菱形的性质得到对角线平分每一组对角,得到∠DAC=∠CAB=30°,根据翻折的性质得到AC⊥MN,AM=A′M,AN=A′N,∠AMN=∠ANM=60°,AM=AN,AM=A′M=AN=A′N,四边形AM A′N是菱形
③根据菱形的性质得到AB=AD,∠ADB=∠ABD=60°,求得∠NA′M=∠DMA′+∠ADB,证得A′M=AM=2,∠NA′M=∠A=60°,得到∠NA′B=∠DMA′,从而判断出△DMA′∽△BA′N,利用相似三角形对应边成比例得到结果.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】分解因式:mn2﹣2mn+m=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列几何体:①球;②长方体;③圆柱;④圆锥;⑤正方体,用一个平面去截上面的几何体,其中能截出圆的几何体有(
A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把下列各式因式分解:

(1)m(m﹣5)﹣2(5﹣m)2

(2)﹣4x3+8x2﹣4x.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】|x|3y4的算术平方根,且|yx|xy,则x+y的值是(  )

A. 5B. 5C. 1D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】P2a23a)是第二象限内的一个点,且点P到两坐标轴的距离之和为12,则点P的坐标是__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】算术平方根等于它本身的数是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图.在平面直角坐标系 中,直线AB分别与 轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥ 轴于点E, ,OB=4,OE=2.

(1)求该反比例函数的解析式;
(2)求△BOD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,由等边三角形、正方形、圆组成的轴对称图案中,等边三角形与三个正方形的面积和的比值为【 】

A. B. 1 C. D.

查看答案和解析>>

同步练习册答案