精英家教网 > 初中数学 > 题目详情
精英家教网如图,在直角坐标平面中,O为坐标原点,一次函数y=kx-3的图象与y轴交于点A,与x轴的正半轴交于点B,且S△OAB=6.
(1)求点A与点B的坐标及A,B两点间的距离;
(2)求此一次函数的解析式;
(3)如果点P在x轴上,且△ABP是等腰三角形,写出点P的坐标.
分析:(1)首先由函数的解析式可以求出A的坐标,又S△OAB=6,利用三角形的面积公式可以求出B的坐标,最后利用勾股定理就可以求出A,B两点间的距离;
(2)利用待定系数法即可确定一次函数的解析式;
(3)由于P在x轴上,且△ABP是等腰三角形,那么以A为圆心AB之长为半径画弧与x轴有一个交点,线段AB的垂直平分线于x轴有一个交点,最后以B为圆心,以AB之长为半径画弧与x轴有两个交点,由此即可得到点P的坐标.
解答:解:(1)当x=0时,y=-3,
∴A(0,-3);
∵S△OAB=6,
∴OB=4,
∴B(4,0),
∴AB=
32+42
=5;

(2)把A(4,0)代入y=kx-3,
k=
3
4

y=
3
4
x-3


(3)所求点P的坐标为(-4,0)或(-1,0)或(
25
8
,0)或(9,0).
点评:此题主要考查了待定系数法确定函数的解析式、等腰三角形的性质等知识,解题时首先利用面积公式确定直线经过的点的坐标,然后利用待定系数法确定函数的解析式即可解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面xOy中,抛物线C1的顶点为A(-1,-4),且过点B(-3,0)
(1)写出抛物线C1与x轴的另一个交点M的坐标;
(2)将抛物线C1向右平移2个单位得抛物线C2,求抛物线C2的解析式;
(3)写出阴影部分的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面中,Rt△ABC的斜边AB在x轴上,直角顶点C在y轴的负半轴上,cos∠ABC=
45
,点P在线段OC上,且PO、OC的长是方程x2-15x+36=0的两根.
(1)求P点坐标;
(2)求AP的长;
(3)在x轴上是否存在点Q,使以A、Q、C、P为顶点的四边形是梯形?若存在,请求出直线PQ的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面内,函数y=
m
x
(x>0,m是常熟)的图象经过A(1,4),B(a,b),其中a>1,过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB
(Ⅰ)求函数y=
m
x
的解析式;
(Ⅱ)若△ABD的面积为4,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

完成下列各题:
(1)解方程组
2x+y=2;         ①
3x-2y=10.      ②

(2)如图,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=
3
5
.求cos∠BAO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),要使以A、B、C、D为顶点的四边形是平行四边形,且点D坐标在第一象限,那么点D的坐标是
(2,5)或(8,5)
(2,5)或(8,5)

查看答案和解析>>

同步练习册答案