精英家教网 > 初中数学 > 题目详情

(1)如图1,已知∠EOF=120°,OM平分∠EOF,A是OM上一点,∠BAC=60°,且与OF、OE分别相交于点B、C,则有AB=AC;
(2)如图2,在如上的(1)中,当∠BAC绕点A逆时针旋转使得点B落在OF的反向延长线上时,(1)中的结论是否还成立?若成立,给出证明;若不成立,说明理由;
(3)如图3,已知∠AOC=∠BOC=∠BAC=60°,求证:①△ABC是等边三角形; ②OC=OA+OB.

(1)证明:过A作AG⊥OF于G,AH⊥OE于H,
则∠AHO=∠AGO=90°,
∵∠EOF=120°,
∴∠HAG=60°=∠BAC,
∴∠HAG-∠BAH=∠BAC-∠BAH,
∴∠BAG=∠CAH,
∵OM平分∠EOF,AG⊥OF,AH⊥OE,
∴AG=AH,
在△BAG和△CAH中,

∴△BAG≌△CAH(ASA),
∴AB=AC;

(2)结论还成立,
证明:过A作AG⊥OF于G,AH⊥OE于H,
与(1)证法类似根据ASA证△BAG≌△CAH(ASA),
则AB=AC;

(3)证明:①如图,∠FOA=180°-120°=60°,
∠FOC=60°+60°=120°,
即OM平分∠COF,
由(2)知:AC=AB,
∵∠CAB=60°,
∴△ABC是等边三角形;
②在OC上截取BO=ON,连接BN,
∵∠COB=60°,
∴△BON是等边三角形,
∴ON=OB,∠OBN=60°,
∵△ABC是等边三角形,
∴∠ABC=60°=∠NBO,
∴都减去∠ABN得:∠ABO=∠CBN,
在△AOB和△CNB中

∴△AOB≌△CNB(SAS),
∴NC=OA,
∴OC=ON+CN=OB+OA,
即OC=OA+OB.
分析:(1)过A作AG⊥OF于G,AH⊥OE于H,求出∠CAH=∠BAG,根据ASA证△BAG≌△CAH,推出AB=AC即可;
(2)证法与(1)类似,过A作AG⊥OF于G,AH⊥OE于H,求出∠CAH=∠BAG,根据ASA证△BAG≌△CAH,推出AB=AC即可;
(3)①还原图形与图2类似由(2)知AC=AB,∠CAB=60°,根据等边三角形的判定推出即可;
②在OC上截取BO=ON,连接NB,得出等边三角形BON,求出∠ABO=∠CBN,证△AOB≌△CNB,推出NC=OA即可.
点评:本题考查了等边三角形的性质和判定,全等三角形的性质和判定,主要考查学生综合运用性质进行推理的能力,题目比较典型,证明过程类似,是一道探究性的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网下列说法:
(1)如图1,已知PA=PB,则PO是线段AB的垂直平分线;
(2)对于反比例函数y=
2
x
,(x1,y1),(x2,y2)是其图象上两点,若x1<x2,则y1>y2; 
(3)对角线互相垂直平分的四边形是菱形;
(4)如图2,在△ABC中,∠A=30°,BC=2,则AC=4;
(5)一组对边平行的四边形是梯形;    
(6)y=
k
x
是反比例函数;
(7)若一个等腰三角形的两边长为2和3,那么它的周长为7,
其中正确的有(  )个.
A、0B、1C、2D、5

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连接AE、BF.求证:AE=BF;
(2)为响应市人民政府“形象胜于生命”的号召,在甲建筑物上从A点到E点挂一长为30m的宣传条幅(如图2),在乙建筑物的顶部D点测得顶端A点的仰角为45°,测得条幅底端E点的俯角为30°,求底部不能直接到达的两建筑物之间的水平距离(答案可带根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知双曲线y=
k
x
(k>0)
与直线y=k′x交于A,B两点,点A在第一象限.试解答下列问题:
(1)若点A的坐标为(4,2),则点B的坐标为
 
;若点A的横坐标为m,则点B的坐标可表示为
 

(2)如图2,过原点O作另一条直线l,交双曲线y=
k
x
(k>0)
于P,Q两点,点P在第一象限.
①说明四边形APBQ一定是平行四边形;
②设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知正方形ABCD,将一个45度角∝的顶点放在D点并绕D点旋转,角的两边分别交AB边和BC边于点E和F,连接EF.求证:EF=AE+CF
(1)小明是这样思考的:延长BC到G,使得CG=AE,连接DG,先证△DAE≌△DCG,再证△DEF≌△DGF,请你借助图2,按照小明的思路,写出完整的证明思路.
(2)刘老师看到这条题目后,问了小明两个小问题:①如果正方形的边长和△BEF的面积都等于6,求EF的长②将角∝绕D点继续旋转,使得角∝的两边分别和AB边延长线、BC边的延长线交于E和F,如图3所示,猜想EF、AE、CF三线段之间的数量关系并给予证明.请你帮忙解决.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图甲,已知A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,且AB=CD.
(1)试问OE=0F吗?请说明理由.
(2)若△DEC沿AC方向平移到如图乙的位置,其余条件不变,上述结论是否仍成立?请说明理由.

查看答案和解析>>

同步练习册答案