精英家教网 > 初中数学 > 题目详情
(2010•义乌)(1)将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象,则y2=   
(2)如图,P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=   
【答案】分析:(1)根据二次函数图象左加右减,上加下减的平移规律即可得出y2的图象;
(2)由(1)可得出抛物线y2的对称轴,也就得出了P点的横坐标;将x=t分别代入y=x和抛物线y2的解析式中,可求出A、B的坐标,若△ABP是以点A或点B为直角顶点的等腰直角三角形,则AB=AP(或BP)即A、B两点纵坐标差的绝对值等于点A(或B)与点P横坐标差的绝对值,由此可列出关于t的方程求出t的值.
解答:解:(1)抛物线y1=2x2向右平移2个单位,得:y=2(x-2)2=2x2-8x+8;
故抛物线y2的解析式为y2=2x2-8x+8.

(2)由(1)知:抛物线y2的对称轴为x=2,故P点横坐标为2;
当x=t时,直线y=x=t,故A(t,t);
则y2=2x2-8x+8=2t2-8t+8,故B(t,2t2-8t+8);
若△ABP是以点A或点B为直角顶点的等腰直角三角形,则有AB=AP或AB=BP,
此时AB=|2t2-8t+8-t|,AP=|t-2|,
可得:|t-2|=|2t2-8t+8-t|;
当2t2-8t+8-t=t-2时,如图1,t2-5t+5=0,解得t1=
当2t2-8t+8-t=2-t时,如图2,t2-4t+3=0,解得t2=1,t3=3;
故符合条件的t值为:1或3或
点评:此题主要考查了二次函数的图象的平移、函数图象交点、等腰直角三角形的判定和性质等.
练习册系列答案
相关习题

科目:初中数学 来源:2011年广东省茂名市化州市文楼镇第一中学中考数学二模试卷(解析版) 题型:解答题

(2010•义乌)如图,一次函数y=kx+2的图象与反比例函数y=的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,=
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2011年3月浙江省宁波市七中九年级月考数学试卷(解析版) 题型:解答题

(2010•义乌)如图,一次函数y=kx+2的图象与反比例函数y=的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,=
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:填空题

(2010•义乌)(1)将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象,则y2=   
(2)如图,P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=   

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《反比例函数》(06)(解析版) 题型:解答题

(2010•义乌)如图,一次函数y=kx+2的图象与反比例函数y=的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,=
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省义乌市中考数学试卷(解析版) 题型:解答题

(2010•义乌)如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).
(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;
(3)在图1中,设点D坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案