精英家教网 > 初中数学 > 题目详情
Rt△ABC的三个顶点A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴.若斜边上的高为h,则(  )
A.h<1B.h=1C.1<h<2D.h>2
由题A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴,
知A、B两点关于y轴对称,记斜边AB交y轴于点D,

可设A(-
b
,b),B(
b
,b),C(a,a2),D(0,b)
则因斜边上的高为h,
故:h=b-a2
∵△ABC是直角三角形,由其性质直角三角形斜边中线等于斜边一半,
∴得CD=
b

a2+(a2-b)2
=
b
方程两边平方得:(b-a2)=(a2-b)2
即h=(-h)2
因h>0,得h=1,是个定值.
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,将抛物线y=x2沿x轴正方向平移3个单位得到抛物线l,直线y=-2.
(1)求抛物线l的解析式;
(2)点A是抛物线l上一点,点B是直线y=-2上一点,是否存在等腰△OAB?若存在,求点A,B两点的坐标;若不存在,说明理由;
(3)若将上题中的“沿x轴正方向平移3个单位”改为“沿x轴正方向平移n个单位”,其它条件不变,探究上题(2)中的问题.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积;
(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-2x+c经过直线y=x-3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)⊙M是过A、B、C三点的圆,连接MC、MB、BC,求劣弧CB的长;(结果用精确值表示)
(3)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标.(结果用精确值表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,E是边BC上的一点.
(1)若线段BE的长度比正方形ABCD的边长少2cm,且△ABE的面积为4cm2,试求这个正方形ABCD的面积;
(2)若正方形ABCD的面积为8cm2,E是边BC上的一个动点,设线段BE的长为xcm,△ABE的面积为ycm2,试求y与x之间的函数关系式和函数的定义域;
(3)当x取何值时,第(2)小题中所求函数的函数值为2?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2-4x+c的图象经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标;
(3)过点B作BC垂直于x轴于点C,求△AOC的面积?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx+c(b≤0)的图象与x轴交于A,B两点,与y轴交于点C,其中点A的坐标为(-2,0);直线x=1与抛物线交于点E,与x轴交于点F,且45°≤∠FAE≤60度.
(1)用b表示点E的坐标;
(2)求实数b的取值范围;
(3)请问△BCE的面积是否有最大值?若有,求出这个最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=-2x+t(t>0)的图象与x轴,y轴分别交于点C,D.
(1)求点C,点D的坐标;
(2)已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点,若以点C,点D为直角顶点的△PCD与△OCD相似.求t的值及对应的点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

医药公司推出了一种抗感冒药,年初上市后,公司经历了从亏损到盈利的过程.如图的二次函数图象(部分)表示了该公司年初以来累积利润S(万元)与时间t(月)之间的关系(即前t个月的利润总和S与t之间的关系).
根据图象提供信息,解答下列问题:
(1)公司从第几个月末开始扭亏为盈;
(2)累积利润S与时间t之间的函数关系式;
(3)求截止到几月末公司累积利润可达30万元;
(4)求第8个月公司所获利是多少元?

查看答案和解析>>

同步练习册答案