8£®Èçͼ£¬Ö±Ïßy=kx+4Ó뺯Êýy=$\frac{m}{x}$£¨x£¾0£¬m£¾0£©µÄͼÏó½»ÓÚA¡¢BÁ½µã£¬ÇÒÓëx¡¢yÖá·Ö±ð½»ÓÚC¡¢DÁ½µã£®
£¨1£©ÈôÖ±Ïßy=kx+4ÓëÖ±Ïßy=-x-2ƽÐУ¬ÇÒ¡÷AODÃæ»ýΪ2£¬ÇómµÄÖµ£»
£¨2£©Èô¡÷CODµÄÃæ»ýÊÇ¡÷AOBµÄÃæ»ýµÄ$\sqrt{2}$±¶£¬¹ýA×÷AE¡ÍxÖáÓÚE£¬¹ýB×÷BF¡ÍyÖáÓÚF£¬AEÓëBF½»ÓÚHµã£®
¢ÙÇóAH£ºODµÄÖµ£»
¢ÚÇókÓëmÖ®¼äµÄº¯Êý¹Øϵʽ£»
£¨3£©ÈôµãP×ø±êΪ£¨2£¬0£©£¬ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÊÇ·ñ´æÔÚk£¬mʹµÃ¡÷APBΪֱ½ÇÈý½ÇÐΣ¬ÇÒ¡ÏAPB=90¡ã£¿Èô´æÔÚ£¬Çó³ök£¬mµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÀûÓÃÁ½Ö±ÏßƽÐеõ½k=-1£¬ÔòÈ·¶¨C£¨0£¬4£©£¬ÉèA£¨t£¬-t£¬+4£©£¬¸ù¾ÝÈý½ÇÐÎÃæ»ý¹«Ê½µÃ$\frac{1}{2}$¡Á4¡Át=2£¬½âµÃt=1£¬´Ó¶øµÃµ½Aµã×ø±ê£¬È»ºóÀûÓ÷´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷È·¶¨mµÄÖµ£»
£¨2£©¢ÙÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¨ÆäÖÐx1£¼x2£¬y1£¾y2£©£¬ÓÉÓÚS¡÷COD=$\sqrt{2}$S¡÷AOB£¬ÔòS¡÷COD=$\sqrt{2}$£¨S¡÷BOD-S¡÷BOC£©£¬ÀûÓÃÈý½ÇÐÎÃæ»ý¹«Ê½µÃµ½$\frac{1}{2}$•OC•OD=$\sqrt{2}$£¨ $\frac{1}{2}$•OC•y1-$\frac{1}{2}$•OC•y2£©£¬ÕûÀíµÃOD=$\sqrt{2}$£¨y1-y2£©£¬Ò×µÃAH£ºOD=1£º$\sqrt{2}$£»
¢ÚÓÉÓÚOD=4£¬Ôò£¨y1-y2£©2=8£¬ÀûÓÃÍêȫƽ·½¹«Ê½±äÐεõ½£¨y1+y2£©2-4y1y2=8£¬½Ó×ÅÓÉy=$\frac{m}{x}$¿ÉµÃx=$\frac{m}{y}$£¬´úÈëy=kx+4µÃy2-4y-km=0£¬¸ù¾Ý¸ùÓëϵÊýµÄ¹ØϵµÃy1+y2=4£¬y1•y2=-km£¬ËùÒÔ16+4km=8£¬ÓÚÊǵõ½k=-$\frac{2}{m}$£»
£¨3£©¹ýB×÷xÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪN£¬Èçͼ£¬ÀûÓõȽǵÄÓà½ÇÏàµÈµÃ¡ÏEAP=¡ÏBPN£¬Ôò¿ÉÅжÏRt¡÷EAP¡×Rt¡÷NPB£¬ÀûÓÃÏàËƱȵÃ$\frac{{y}_{1}}{{x}_{2}-2}$=$\frac{2-{x}_{1}}{{y}_{2}}$£¬±äÐεã¨x1-2£©£¨x2-2£©+y1y2=0£¬ÀûÓÃx=$\frac{m}{y}$µÃ£¨$\frac{m}{{y}_{1}}$-2£©£¨$\frac{m}{{y}_{2}}$-2£©+y1y2=0£¬ËùÒÔm2-2m£¨y1+y2£©+4y1y2+£¨y1y2£©2=0£¬½Ó×Å°Ñy1+y2=4£¬y1•y2=2´úÈë¿ÉµÃm2-8m+12=0£¬½âµÃm=2»ò6£¬È»ºó¼ÆËã¶ÔÓ¦µÄkµÄÖµ£®

½â´ð ½â£º£¨1£©¡ßÖ±Ïßy=kx+4ÓëÖ±Ïßy=-x-2ƽÐУ¬
¡àk=-1£¬
¡àÒ»´Îº¯Êý½âÎöʽΪy=-x-4£¬
µ±x=0ʱ£¬y=-x+4=4£¬ÔòC£¨0£¬4£©£¬
ÉèA£¨t£¬-t£¬+4£©£¬
¡ß¡÷AODÃæ»ýΪ2£¬
¡à$\frac{1}{2}$¡Á4¡Át=2£¬½âµÃt=1£¬
¡àA£¨1£¬3£©£¬
¡àm=1¡Á3=3£»
£¨2£©¢ÙÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¨ÆäÖÐx1£¼x2£¬y1£¾y2£©£¬
¡ßS¡÷COD=$\sqrt{2}$S¡÷AOB£¬
¡àS¡÷COD=$\sqrt{2}$£¨S¡÷AOC-S¡÷BOC£©
¡à$\frac{1}{2}$•OC•OD=$\sqrt{2}$£¨ $\frac{1}{2}$•OC•y1-$\frac{1}{2}$•OC•y2£©£¬
¼´OD=$\sqrt{2}$£¨y1-y2£©£¬
¶øAH=y1-y2£¬
¡àAH£ºOD=$\frac{\sqrt{2}}{2}$
¢Ú¡ßOD=4£¬
¡à£¨y1-y2£©2=8£¬¼´£¨y1+y2£©2-4y1y2=8£¬
ÓÉy=$\frac{m}{x}$¿ÉµÃx=$\frac{m}{y}$£¬´úÈëy=kx+4µÃy2-4y-km=0£¬
¡ày1+y2=4£¬y1•y2=-km£¬
¡à16+4km=8£¬¼´k=-$\frac{2}{m}$£¬
¼´mÓëkµÄ¹ØϵʽΪk=-$\frac{2}{m}$£¨m£¾0£©£»
£¨3£©´æÔÚk£¬mʹµÃ¡÷APBΪֱ½ÇÈý½ÇÐΣ¬ÇÒ¡ÏAPB=90¡ã£®
¹ýB×÷xÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪN£¬Èçͼ£¬
Èô¡ÏAPB=90¡ã£¬Ôò¡ÏAPE+¡ÏBPN=90¡ã£¬
¡ß¡ÏAPE+¡ÏPAE=90¡ã£¬
¡à¡ÏEAP=¡ÏBPN£¬
¡àRt¡÷EAP¡×Rt¡÷NPB£¬
¡à$\frac{AE}{PN}$=$\frac{PE}{BN}$£¬¼´$\frac{{y}_{1}}{{x}_{2}-2}$=$\frac{2-{x}_{1}}{{y}_{2}}$£¬
¡à£¨x1-2£©£¨x2-2£©+y1y2=0£¬
¡à£¨$\frac{m}{{y}_{1}}$-2£©£¨$\frac{m}{{y}_{2}}$-2£©+y1y2=0£¬
¼´m2-2m£¨y1+y2£©+4y1y2+£¨y1y2£©2=0£¬
¶øy1+y2=4£¬y1•y2=2£¬
¡àm2-8m+12=0£¬½âµÃm=2»ò6£¬
µ±m=2£¬k=-$\frac{2}{m}$=-1£»µ±m=6£¬k=-$\frac{2}{m}$=-$\frac{1}{3}$£»
¡à´æÔÚk£¬mʹµÃ¡÷APBΪֱ½ÇÈý½ÇÐΣ¬ÇÒ¡ÏAPB=90¡ã£®

µãÆÀ ±¾Ì⿼²éÁË·´±ÈÀýº¯Êý×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ·´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷ºÍÒ»´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷£»»áÇó·´±ÈÀýº¯ÊýÓëÒ»´Îº¯ÊýµÄ½»µã×ø±ê£¬Áé»îÔËÓøùÓëϵÊýµÄ¹Øϵ£»»áÀûÓÃÏàËƱȼÆËãÏ߶εij¤£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®½â·½³Ì£º3£¨5-1.2x£©+1.4=-2£¨0.3x-1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªxy=3£¬Çóx$\sqrt{\frac{y}{x}}$+y$\sqrt{\frac{x}{y}}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªnÊÇ·½³Ìx2+x-3=0µÄÒ»¸ö¸ù£¬Ôò´úÊýʽ2n2+2n-3µÄֵΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ä³¹¤³§Éú²úÒ»ÅúÂÝñ£¬¸ù¾Ý²úÆ·ÖÊÁ¿ÒªÇó£¬ÂÝñµÄÄÚ¾¶¿ÉÒÔÓÐ0.02ºÁÃ×Îó²î£¬³é²é5Ö»ÂÝñ£¬³¬¹ý¹æ¶¨ÄÚ¾¶µÄºÁÃ×Êý¼ÇΪÕýÊý£¬²»×ã¹æ¶¨ÄÚ¾¶µÄºÁÃ×Êý¼ÇΪ¸ºÊý£¬¼ì²é½á¹ûÈçÏÂ±í£®
+0.030-0.018+0.026-0.025+0.015
£¨1£©Ö¸³öÄÄЩ²úÆ·ÊǺϺõÒªÇóµÄ£¨¼´ÔÚÎó²î·¶Î§Äڵģ©
£¨2£©Ö¸³öºÏºõÒªÇóµÄ²úÆ·ÖÐÄĸöÖÊÁ¿ºÃһЩ£¬²¢Óþø¶ÔÖµµÄ֪ʶ½øÐÐ˵Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÈçͼËùʾ£¬DΪ¡÷ABCµÄ±ßABÉϵĵ㣬¹ýDµã×÷DE¡ÎBC¡¢DF¡ÎAC£¬AF½»DEÓÚµãG£¬BE½»DFÓÚµãH£¬ÇóÖ¤£ºGH¡ÎAB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®£¨1£©µ±a£¼0ʱ£¬$\sqrt{a}$ÓÐÒâÒåÂð£¿ÎªÊ²Ã´£¿
£¨2£©µ±a¡Ý0ʱ£¬$\sqrt{a}$¿ÉÄÜΪ¸ºÊýÂð£¿ÎªÊ²Ã´£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬´Ó¡÷ABC¸÷¶¥µã×÷ƽÐÐÏßAD¡ÎEB¡ÎFC£¬¸÷ÓëÆä¶Ô±ß»òÆäÑÓ³¤ÏßÏཻÓÚD£¬E£¬F£®ÇóÖ¤£ºS¡÷DEF=2S¡÷ABC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑ֪ƽÃæÉÏËĵãA¡¢B¡¢C¡¢D£¬Èçͼ£º
£¨1£©»­Ö±ÏßAD£»
£¨2£©»­ÉäÏßBC£¬ÓëADÏཻÓÚO£»
£¨3£©Á¬½áAC¡¢BDÏཻÓÚµãF£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸