精英家教网 > 初中数学 > 题目详情

【题目】中,垂足为,点上,连接并延长交于点,连接.

求证:

求证:

【答案】(1)详见解析;(2)详见解析.

【解析】

1)根据三角形高线的定义求出∠ADB=CDE=90°,并判断出△ACD是等腰直角三角形,根据等腰直角三角形的性质可得AD=CD,然后利用“边角边”证明△ABD和△CED全等,根据全等三角形对应角相等可得结论;

2)在EC上截取EG=BF,根据全等三角形对应角相等可得∠B=CED,然后利用“边角边”证明△BDF和△EDG全等,根据全等三角形对应边相等可得DF=DG,全等三角形对应角相等可得∠BDF=EDG,再求出∠FDG=90°,判断出△DFG是等腰直角三角形,即可得到结论.

1)∵AD是△ABC的高,∠ACB=45°,∴∠ADB=CDE=90°,△ACD是等腰直角三角形,∴AD=CD

在△ABD和△CED中,,∴△ABD≌△CEDSAS),∴∠BAD=ECD

2)如图,在EC上截取EG=BF

∵△ABD≌△CED,∴∠B=CED.在△BDF和△EDG中,,∴△BDF≌△EDGSAS),∴DF=DG,∠BDF=EDG,∴∠FDG=FDE+EDG=FDE+BDF=ADB=90°,∴△DFG是等腰直角三角形,∴∠DFE=45°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,边上的中线,过点的延长线于点外一点,连接,且.求证:

1

2CA平分

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,ADBC边上的中线,AEBC边上的高.

1)若∠ACB100°,求∠CAE的度数;

2)若SABC12CD4,求高AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种动物的身高ydm)是其腿长xdm)的一次函数.当动物的腿长为6dm时,身高为45.5dm;当动物的腿长为14dm时,身高为105.5dm

1)写出yx之间的关系式;

2)当该动物腿长10dm时,其身高为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC三个顶点的坐标分别为A11),B42),C34),

1)画出△ABC关于y轴的对称图形△A1B1C1,并写出点B1的坐标;

2)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校园文学社为了解本校学生对本社一种报纸四个版面的喜欢情况,随机抽取部分学生做了一次问卷调查,要求学生选出自己喜欢的一个版面,将调查数据进行了整理、绘制成部分统计图如下:

请根据图中信息,解答下列问题:

(1)第一版=____%,“第四版”对应扇形的圆心角为________°;

(2)请你补全条形统计图;

(3)若该校有1200名学生,请你估计全校学生中最喜欢“第三版”的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查,榕树的单价比香樟树少20,购买3棵榕树和2棵香樟树共需340.

(1)榕树和香樟树的单价各是多少?

(2)根据学校实际情况,需购买两种树苗共150,总费用不超过10840,且购买香樟树的棵数不少于榕树的1.5,请你算算该校本次购买榕树和香樟树共有哪几种方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列四个手机应用图标中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三角形ABC(记作△ABC)在8×8方格中,位置如图所示,A(-31),B(-24).

1)请你在方格中建立直角坐标系,并写出C点的坐标;

2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(ab),则点P的对应点P1的坐标是

3)在x轴上存在一点D,使△DB1C1的面积等于3,求满足条件的点D的坐标.

查看答案和解析>>

同步练习册答案