精英家教网 > 初中数学 > 题目详情
先观察下列等式,然后用你发现的规律解答下列问题.
1
1×2
=1-
1
2

1
2×3
=
1
2
-
1
3

1
3×4
=
1
3
-
1
4

┅┅
(1)计算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
 

(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
 
;(用含有n的式子表示)
(3)若
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)(2n+1)
的值为
17
35
,求n的值.
分析:通过观察数据找到规律,并以规律解题即可.
解答:解:(1)原式=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
+
1
5
-
1
6
=1-
1
6
=
5
6


(2)原式=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1


(3)
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)(2n+1)

=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+
1
2
(
1
5
-
1
7
)
+…+
1
2
(
1
2n-1
-
1
2n+1
)

=
1
2
(1-
1
2n+1
)
=
n
2n+1

n
2n+1
=
17
35
,解得n=17,
经检验n=17是方程的根,
∴n=17.
点评:主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出分式的符号的变化规律是此类题目中的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

先观察下列等式,然后用你发现的规律解答下列问题.
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,┅┅
(1)根据你发现的规律写出第5个等式:
 

(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
 
.(用含有n的式子表示)
(3)计算:
1
1×3
+
1
3×5
+
1
5×7
+
┅┅+
1
2007×2009

查看答案和解析>>

科目:初中数学 来源: 题型:

先观察下列等式,然后用你发现的规律解答下列问题:
1
1×2
=
1
2
=
1
1
-
1
2
1
2×3
=
1
6
=
1
2
-
1
3
1
3×4
=
1
12
=
1
3
-
1
4

(1)计算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
+
1
6×7
+
1
7×8
=
 
(n为正整数);
(2)化简:
1
x(x+1)
+
1
(x+1)(x+2)
+
1
(x+2)(x+3)
+…+
1
(x+2008)(x+2009)

查看答案和解析>>

科目:初中数学 来源: 题型:

先观察下列等式,然后用你发现的规律解答下列问题.
1
1×2
=1-
1
2
,=
1
2
-
1
3
1
3×4
=
1
3
-
1
4

(1)计算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
 

(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
 
.(用含有n的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

先观察下列等式,然后用你发现的规律解答下面问题
 
1
1×2
=1-
1
2
    
1
2×3
=
1
2
-
1
3
     
1
3×4
=
1
3
-
1
4

(1)填空 
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10
=
9
10
9
10

(2)
1
1×2
+
1
2×3
+
1
3×4
+…+
1
(n-1)n

(3)如果将问题改为如下形式,你还会计算吗?
1
1×5
+
1
5×9
+
1
9×13

(4)解方程
x
1×5
+
x
5×9
+
x
9×13
+…+
x
2009×2013
=503.

查看答案和解析>>

同步练习册答案