如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A.B两点(点A在点B左边),与y轴交于点C.
(1)写出二次函数L1的开口方向、对称轴和顶点坐标;
(2)研究二次函数L2:y=kx2﹣4kx+3k(k≠0).
①写出二次函数L2与二次函数L1有关图象的两条相同的性质;
②若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否发生变化?如果不会,请求出EF的长度;如果会,请说明理由.
考点:二次函数综合题。
专题:综合题。
分析:(1)抛物线y=ax2+bx+c中:a的值决定了抛物线的开口方向,a>0时,抛物线的开口向上;a<0时,抛物线的开口向下.
抛物线的对称轴方程:x=﹣;顶点坐标:(﹣,).
(2)①新函数是由原函数的各项系数同时乘以k所得,因此从二次函数的图象与解析式的系数的关系入手进行分析.
②联系直线和抛物线L2的解析式,先求出点E、F的坐标,进而可表示出EF的长,若该长度为定值,则线段EF的长不会发生变化.
解答:解:(1)抛物线y=x2﹣4x+3中,a=1、b=﹣4、c=3;
∴﹣=﹣=2,==﹣1;
∴二次函数L1的开口向上,对称轴是直线x=2,顶点坐标(2,﹣1).
(2)①二次函数L2与L1有关图象的两条相同的性质:
对称轴为x=2或定点的横坐标为2,
都经过A(1,0),B(3,0)两点;
②线段EF的长度不会发生变化.
∵直线y=8k与抛物线L2交于E、F两点,
∴kx2﹣4kx+3k=8k,
∵k≠0,∴x2﹣4x+3=8,
解得:x1=﹣1,x2=5,∴EF=x2﹣x1=6,
∴线段EF的长度不会发生变化.
点评:该题主要考查的是函数的基础知识,有:二次函数的性质、函数图象交点坐标的解法等,难度不大,但需要熟练掌握.
科目:初中数学 来源: 题型:
5 |
2 |
13 |
4 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
1 | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com