精英家教网 > 初中数学 > 题目详情
25、已知:如图,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠BCA交AD于E,AF平分∠BAD交BD于F.
求证:(1)CF2=CD•CB;
(2)DE•DB=DF•DA
分析:(1)由射影定理得CA2=CD•CB,再证CA=CF,得CF2=CD•CB;
(2)易证△CAE≌△CFE得∠CAE=∠CFE,所以∠CBA=∠CFE,所以△DEF∽△DAB得DE•DB=DF•DA.
解答:证明:(1)∵∠BAC=∠ADC=90°,∠ACB=∠DCA,
∴△BAC∽△ADC.
∴CA:CD=CB:CA.
∴CA2=CD•CB.
∵∠AFC=180°-∠ADF-∠FAD=90°-∠FAD,
∠CAF=∠CAB-∠BAF=90°-∠BAF,
∵AF平分∠BAD,
∴∠FAD=∠BAF.
∴∠AFC=∠CAF.
∴CA=CF.
∴CF2=CD•CB.

(2)∵CA=CF,∠ACE=∠FCE,CE=CE,
∴△CAE≌△CFE.
∴∠CAE=∠CFE.
∵∠CAE=90°-∠BAD=∠B,
∴∠CFE=∠B.
∴EF∥AB.
∴△DEF∽△DAB.
∴DE:DF=DA:DB.
∴DE•DB=DF•DA.
点评:证明乘积式时,通常化成比例式,利用三角形相似达到目的.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案