精英家教网 > 初中数学 > 题目详情
13.如图,点D在等边△ABC内,将△ABC绕点C顺时针旋转60°,得到△ACE,连接BE、DE,若∠AEB=45°,则∠DBE的度数为(  )
A.15°B.20°C.25°D.30°

分析 首先由△ABC和△EDC都是正三角形,易证得△BCD≌△ACE,然后由全等三角形的对应角相等,求得∠BDC+∠DEB=∠AEB+60°,又由在△DBE中,∠BDE+∠DEB+∠DBE=180°,即可求得答案.

解答 解:∴CD=CE,∠DCE=60°,
∴△EDC是等边三角形
∵△ABC是等边三角形,
∴BC=AC,DC=EC,∠BCA=∠DCE=60°,
∴∠BCD=∠ACE,
在△BCD和△ACE中,
 $\left\{\begin{array}{l}{BC=AC}\\{∠BCD=∠ACE}\\{DC=EC}\end{array}\right.$,
∴△BCD≌△ACE(SAS),
∴∠BDC=∠AEC=∠AEB+∠CED-∠DEB=∠AEB+60°-∠DEB,
∴∠BDC+∠DEB=∠AEB+60°,
∵在△DBE中,∠BDE+∠DEB+∠DBE=180°,
即∠BDC+∠CDE+∠DEB+∠DBE=180°,
∴∠DBE=180°-(∠BDC+∠CDE+∠DEB)=180°-45°-60°-60°=15°
故选:A.

点评 此题考查了全等三角形的判定与性质.解决本题的关键是证明△BCD≌△ACE,注意掌握数形结合思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.下列图形中,既是轴对称图形又是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.已知二次函数y=x2-2x-3,点P在该函数的图象上,点P到x轴、y轴的距离分别为d1、d2.设d=d1+d2,下列结论中:
①d没有最大值;
②d没有最小值;
③-1<x<3时,d随x的增大而增大;
④满足d=5的点P有四个.  
其中正确结论的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.从-1,0,π,3中随机任取一数,取到无理数的概率是(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.用科学记数法表示0.0000907为9.07×10-5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是(  )
年级七年级八年级九年级
合格人数270262254
A.七年级的合格率最高B.八年级的学生人数为262名
C.八年级的合格率高于全校的合格率D.九年级的合格人数最少

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,在正方形ABCD中,AB=6,点E在边CD上,DE=$\frac{1}{3}$DC,连接AE,将△ADE沿AE翻折,点D落在点F处,点O是对角线BD的中点,连接OF并延长OF交CD于点G,连接BF,BG,则△BFG的周长是$\frac{12}{5}$($\sqrt{5}$+$\sqrt{10}$).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为(  )
A.90°B.120°C.135°D.150°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有
“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.

(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.
利用图中所提供的信息解决以下问题:
①小明一共统计了150个评价;
②请将图1补充完整;
③图2中“差评”所占的百分比是13.3%;
(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.

查看答案和解析>>

同步练习册答案