精英家教网 > 初中数学 > 题目详情
3.计算:(要求写出计算过程)
(1)5-(-6)×2÷22
(2)($\frac{2}{7}$-$\frac{5}{9}$+$\frac{4}{21}$)×(-63)
(3)(-2)3×($\frac{1}{2}$)2-|-1-2|
(4)$\sqrt{16}$+$\root{3}{{-\frac{1}{27}}$-(-$\frac{1}{3}$).

分析 (1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;
(2)原式利用乘法分配律计算即可得到结果;
(3)原式先计算乘方及绝对值运算,再计算乘法运算即可得到结果;
(4)原式利用算术平方根,立方根定义计算即可得到结果.

解答 解:(1)原式=5+3=8;
(2)原式=-18+35-12=5;
(3)原式=-2-3=-5;
(4)原式=4-$\frac{1}{3}$+$\frac{1}{3}$=4.

点评 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,∠B=∠CFD.
证明:(1)CF=EB.
(2)AB=AF+2EB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知,等腰Rt△ABC,∠BAC=Rt∠,在直角边AB的左侧作直线AP,点B关于直线AP的对称点为E,连结BE,CE,其中CE交直线AP于点F.
(1)依题意,在图1中补全示意图;当∠PAB=18°时,求∠ACF的度数;
(2)当0°<∠PAB<45°时,利用图1,求证:∠PAB+∠ACE=45°;
(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FC之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.把下列各数填在相应的大括号里:
   $\frac{1}{2}$π,-$\frac{1}{6}$,0,$\frac{22}{7}$,$\sqrt{8}$,-3.24,5.232232223…,3.1415.
整数:{0,$\sqrt{9}$,+5 }
负分数:{-$\frac{1}{6}$,-3.24  }
正有理数:{$\sqrt{9}$,+5,$\frac{22}{7}$,3.1415 }
无理数:{$\frac{1}{2}π$,$\sqrt{8}$,5.232232223…}.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.一个不透明的袋子中装有3个红球和若干个白球,它们除颜色外其余都相同.现随机从袋中摸出一个球,若颜色是白色的概率为$\frac{2}{3}$,则袋中白球的个数是6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.已知A(0,1),B(3,1),C(4,3),如果在平面直角坐标系中存在一点D,使得△ABD与△ABC全等,那么点D的坐标为(-1,3)或(-1,-1)或(4,-1).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,△ABC中,E是BC上的一点,F是AC上一点,且3BE=BC,4CF=AF,AE、BF交于P点,如果△ABP的面积是30平方厘米,求△ABC的面积$\frac{120}{11}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图1,在直角坐标系中,矩形OABC的对角线AC所在直线表达式为y=-$\frac{3}{5}$x+3.
(1)在x轴的正半轴上找出点M,使△AMB为等腰三角形,并求出所有符合要求的点M的坐标;
(2)如图2,把△AOC沿对角线AC折叠(使△ACE和△ABC落在同一平面内),CE交AB于点F.
①试判断△ACF的形状,并说明理由;
②求重叠部分△ACF的面积;
③求直线CE的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在△ABC中,∠ACB=90°,AC=BC,AD为△ABC的角平分线,过点B作AD的垂线,分别交AD、AC的延长线于E、F两点,连接CE.
(1)求证:BE=EF;
(2)求证:AD=2BE;
(3)求∠AEC的度数.

查看答案和解析>>

同步练习册答案